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Abstract—The optimal power flow problem can be used to
determine the generation dispatch in electrical grids taking into
account circuit physics and technical constraints. This paper
uses an old-fashioned mathematical decomposition technique,
the Dantzig-Wolfe decomposition, to solve such problems and
compares the results to state-of-the-art commercial solvers.
The linearised ’DC’ OPF model is reformulated to create a
block angular structure of the problem and is optimized through
a column generation algorithm based on the simplex method.
Columns of variables are generated for each iteration of the
optimization process, providing a solution where selected vertices
from the feasible sets are assigned a weight and combined to get
the optimal value.
The results of three test cases consist of an useful starting point
for further works with larger test systems and MILP problems
such as the transmission network expansion planning problems.

I. INTRODUCTION

A. Context and motivation

The Optimal Power Flow (OPF) problem allows to opti-
mize control variables in power systems with respect to a
defined objective function [1]. The aim of the OPF problem
is to minimize the objective function by ensuring that all
the constraints in the formulations are satisfied. The power
flow equations, technical equipment limits and operational
limits build the constraints of the problem [2]. The OPF
problem forms the basis for other more complex power system
optimisation problems such as the security-constrained OPF or
the transmission expansion planning (TNEP) problem, which
have high practical value for system operators. Hence, the
efficient and robust solution to the OPF problem also opens
the possibility for a more efficient solution to its more more
complex variants.
This paper provides exploratory work on the solution to the
OPF problem using Dantzig-Wolfe reformulation (DW) [3].
The linearised ’DC’ OPF approximation [4] is used for the
application of the DW reformulation. In order to test the
developed method, three examples of small power systems are
taken from [5] and the computational performance is validated

against existing optimal power flow tools, e.g., PowerModels.jl
[6] using the Gurobi solver [7].

B. Dantzig-Wolfe decomposition in the literature

In literature, decomposition techniques such as the Benders
decomposition [8], and its nested extension [9], have been
used as solution techniques for large-scale mixed-integer linear
programming (MILP) problems. Nevertheless, there is still a
lack of literature on the application of the DW decomposition,
combined with a Column Generation (CG) algorithm [10],
to OPF problems. In fact, in the current literature, the DW
reformulation coupled with CG methods is mainly used in
the context of operations research, such as in [11]. Regarding
its application in the context of power system optimisation,
the DW decomposition is restricted to demand response
applications [12], peak minimization for demand response
applications [13] and optimal VAr planning problems in multi-
area electric power systems [14].

The main contributions of this paper are (i) the reformu-
lation of the linearised optimal power flow model to create
a block structure, and (ii) the development of a column
generation method for the application of the simplex method
to solve the OPF problem. The paper is structured as follows.
Section II provides the reformulation of the problem to create
a block structure and outlines the column generation method.
Section III applies the methodology to a number of test
cases and analyses the convergence behaviour. Finally, section
IV summarizes the conclusions and provides future research
directions.

II. METHODOLOGY

A. DC OPF problem

The original problem consists of the DC OPF formulation
as described in (1) - (6) [15], where the nonlinear constraints
have been linearised and several assumptions have been taken
on the system characteristics [16].

min(C) =
G∑
g

Pg · Cg+
L∑
lfe

Plfe · Cl ∀g ∈ G, lfe ∈ L (1)
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s.t.

L∑
lfe

Plfe +

G∑
g

Pg =

M∑
m

Pm ∀n ∈ N (2)

Plfe − blfe(θf − θe) = 0 ∀lfe ∈ L (3)

Pmin
lfe ≤ Plfe ≤ Pmax

lfe ∀lfe ∈ L (4)

0 ≤ Pg ≤ Pmax
g ∀g ∈ G (5)

θref = 0 (6)

The objective function (1) minimizes the total generation
cost. The term Cl has a value of zero for each branch.
Constraint (2) describes the nodal power balance (or
Kirchoff’s current law) for each bus n ∈ N . The terms in (2)
refer to the branches lfe ∈ L, generators g ∈ G and loads
m ∈ M . The f and in e in lfe respectively refer to the from
and to bus of the branch.
Equation (3) represents Kirchoff’s voltage and Ohm’s laws
respectively for the branches lfe ∈ L, while (4) and (5)
are the active power limits for namely the existing branches
lfe ∈ L and generators g ∈ G. Lastly, (6) provides the
voltage angle reference in the system.

B. Dantzig-Wolfe decomposition, Column Generation and
Simplex method

The main idea behind the DW decomposition is to express
the polyhedron of the original problem, i.e. the feasible set, as
a combination of extreme points Q = x1, ..., xQ and extreme
rays R = r1, ..., rR. Therefore, each feasible set is represented
as a multitude of vertices in the solution space linked by
lines, or rays. The combination of these object define the
boundaries of the possible solutions for the variables in the
formulation. Particularly, the vertices are constrained by the
minimum and maximum value a variable can take in the
optimization process.
In order to simplify the formulation without losing accuracy,
only the extreme points (or vertices) Q are taken into account
in this paper. Since the feasible sets of the test cases are fully
bounded, the influence of the extreme rays R is negligible.

z∗ = min
Xg,Xp

Xg∑
i

(

G∑
g

Cg · xg,i)λsp1,i+

Xl∑
j

(

S∑
l

Cl · xl,j)λsp2,j

(7)
s.t.

Xg∑
i

(

G∑
g

A1 · xg,i)λsp1,i +

Xl∑
j

(

S∑
l

A2 · xl,j)λsp2,j ≤ bm (yn)

(8)
Xg∑
i

λsp1,i = 1 (α1) (9)

Xl∑
j

λsp2,j = 1 (α2) (10)

The OPF problem after DW decomposition is based on two
subproblems respectively linked to the set of generators and
branches in the power system. Equations (7)-(10) define the
Master Problem (MP). It computes the objective cost z∗ by
taking into account all the vertices in the two polyhedrons Xg

and Xl. Each vertex is assigned a variable λsp1,i or λsp2,j

which corresponds to its weight in the final solution.
The linking or complicating constraints are expressed by
equation (8), where the two matrices A1 and A2 are related
to the subproblems. They contain the coefficients for each
variable in the subproblem based on their presence in the
linking constraints. In this reformulation, the linking or com-
plicating constraints consist of the nodal balance and power
flow equations defined previously in the text in equations (2)
and (3).
Furthermore, the bm vector correspond to the load demand
for each node in the power system. The number of linking
constraints is therefore the number of nodes N in the power
system. Each element of this set of complicating constraints
has a dual yn being computed.
Finally, as defined by equations (9) and (10), the sum of the
weights for each subproblem must be equal to one to ensure
the convexity of the problem. The duals α1 and α2 of these
convexity constraints are used during each iteration of the CG
method.
The number of vertices in the feasible set scales with a factor
of 2n, where n is the number of variables in the system, e.g.
the active power set points from a set of n generators. It be-
comes clear that the problem becomes numerically intractable
for higher values of n.
For this reason, the CG method as depicted in Fig. 1 is used.

Original problem

Master problem Set of pricing
problems

Subset of variables
is chosen (RMP)

Optimize the
pricing problem

Solve dual problem
of RMP

Negative
objective value?

Add new columns
of variables

Optimal
value

No Yes

Fig. 1. Column Generation method flow chart.
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The MP is reduced to a Restricted Master Problem (RMP)
where only a small subset of vertices is chosen and updated
for each iteration of the CG algorithm. The RMP correlates
the pricing problems and verifies that the global constraints
are satisfied [17]. The CG algorithm determines the columns
of variables to be added by combining the objective value of
the subproblems, computed following equation (11), with the
simplex method [18]. The simplex tableau used in this paper
is provided in Table I.

z∗spi = min(cTspi − yn ·Ai)xspi (11)

The elements y1, ..., yN and α1, α2 are the duals of respec-

TABLE I
SIMPLEX METHOD TABLE

y1 . . . yN α1 α2 z BV
λ1

. . .
Binv Binv*b

λn

λn+1

λn+2

tively the linking constraints and convexity constraints, as
indicated previously in the text. The Basic Variables (BV) are
the weights λsp assigned to each vertex and their values are
computed by Binv ∗ bm. Binv is the matrix indicating the
initial values for each variable at each iteration, obtained by
multiplying the Ai matrix by the incoming vertex. Initially,
Binv is an identity matrix, since the starting point for both
subproblems is a vertex whose coefficients are only zeros.
For this reason, bm assumes the values of the slack variables
sn needed to start the algorithm and is defined as the vector
of the basic variables. Equation (8) can therefore be rewritten
as (12), where n is the number of linking equations.
Xg∑
i

(

G∑
g

A1 · xg,i)λsp1,i +

Xl∑
j

(

S∑
l

A2 · xl,j)λsp2,j + sn = bm

(12)
A new column enters the table for each iteration, depending
on the highest objective value among the subproblems. Its
position is based on a ratio test between the basic variable
values and the column entering the algorithm, with all the
negative basic variables and zeros in the column coefficients
not taken into account.
If none of the subproblems leads to a reduced cost, i.e. their
objective values are lower or equal to 0, the CG algorithm
stops.
The objective value z∗ of the MP is updated for each iteration.
In the case of a minimization with two subproblems, the lower
bound (LB) is computed as LB = z∗ − z∗sp,1 − z∗sp,2. For a
maximisation, the upper bound (UB) is defined vice versa as
UB = z∗+ z∗sp,1+ z∗sp,2. When the LB/UB and z∗ converge
to the same result, within a certain tolerance, the optimum is
found.
Fig. 2 summarizes the interrelations and exchange of values
between the MP and the related subproblems for the DW
decomposition [13].

Master
Problem

Subproblem 1 Subproblem 2

yn, α1

z∗sp,1, xg,i

yn, α2

z∗sp,2, xl,j

Fig. 2. Exchange of variables between the MP and the related subproblems.

C. DC OPF Problem with Dantzig-Wolfe decomposition

In order to apply the DW decomposition in combination
with a CG method, a block-angular structure of the optimi-
sation problem is necessary. In this sense, Fig. 3 shows the
block angular structure of the DC OPF problem formulated
in equations (1)-(6), where the equations are assigned to the
different parts of the structure.

Objective function
∑G

g Pg · Cg+
∑L

lfe Plfe · Cl

Linking constraints
∑L

lfe Plfe +
∑G

g Pg =
∑M

m Pm

Plfe − blfe(θf − θe) = 0

0 ≤ Pg ≤ Pmax
g

−Pmax
lfe ≤ Plfe ≤ Pmax

lfe

θref = 0
Subproblem 2

Subproblem 1

Fig. 3. Block angular structure of the DC OPF problem.

The DC OPF-DW problem is divided into a MP and
two subproblems: the first one, SP1, is linked to the power
generation in the system. In SP1, there are G variables
where G is the number of generators. In SP2, the number of
variables corresponds to S = L+N , where L and N are the
numbers of branches and nodes, respectively, as the nodal
voltage angles are linked to the power flows through the lines
in (3).
Therefore, the matrices of coefficients for each variable
in problem A1 and A2 refer to the numner S of linking
constraints defined by equations (2) and (3). For this reason,
the matrices have both S rows. The number of columns
corresponds instead to the number of variables for each
subproblem, namely G for A1 and S for A2.
The formulation of the MP is expressed in previous general
equations (7)-(10) from section II-B, while the subproblems
of this particular formulation are defined in the following two
subsections.

1) Subproblem 1: The objective value z∗sp1 and constraints
of SP1 are defined as:

z∗sp1 = max (

G∑
g

CT
g · xg,i −

S∑
i

(yTn ·A1)xg,i − α1) (13)
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s.t.
xg,i ≤ Pmax

g ∀g ∈ G (14)

xg,i ≥ 0 ∀g ∈ G (15)

Each xg,i belonging to the subproblem SP1 is constrained by
the minimum and maximum generation capacity Pmin

g and
Pmax
g , respectively.

2) Subproblem 2: In subproblem SP2, the variables are
limited by the power rating Pmin

lfe , Pmax
lfe of the branches in

(17) and by the voltage angle bounds in (18). Equation (19)
provides the reference for the voltage angle.

z∗sp2 = max (

S∑
j

CT
l · xl,j −

S∑
j

(yTj ·A2)xl,j − α2) (16)

s.t.
Pmin
lfe ≤ xl,j ≤ Pmax

lfe ∀j ∈ 1 : L (17)

θmin
n ≤ xl,j ≤ θmax

n ∀j ∈ L+ 1 : S (18)

xl,j = 0 ∀j = L+ 1 (19)

III. RESULTS

In this section, the results of the three test cases are
analysed. Firstly, the DW & CG method is tested against
PowerModels [6] using Gurobi solver v9.1.2 [7]. Secondly,
the relation between the objective value and the lower bound
of each investigated test case is shown. The DW & CG method
is implemented in Julia / JuMP [19].

A. Dantzig-Wolfe decomposition versus Gurobi

The comparison between the two methods is shown in table
II. By using Gurobi with the barrier optimization method, the
optimization process takes both less time and iterations to
reach the objective value compared to the DW & CG algorithm
with a tolerance of 10−5.
In addition, it is noticed that the number of iterations and the
computational time is proportionally dependent to the number
of buses in the test case.

TABLE II
COMPUTATIONAL TIME AND NUMBER OF ITERATIONS NEEDED TO REACH

OPTIMALITY FOR THE THREE TEST CASES WITH GUROBI AND THE
DW&CG METHOD.

Gurobi [s] Iterations DW & CG [s] Iterations
Case 3 0.004722 1 0.09355 7
Case 5 0.006595 2 0.180879 12
Case 14 0.010442 9 0.487918 28

B. Analysis of the three test cases

The behaviour of both the computed objective values and
lower bounds throughout each iteration of the method is shown
in Figures 4, 5 and 6.
For all cases, the relative objective value has a steady be-
haviour while the lower bound oscillates between different
negative values before becoming positive and reaching op-
timality. This can be explained by the fact that the starting

point of the method is a vector of zeros. For this reason, the
method takes some iterations and a wider range of values to
find the right combination of power generation and branch
flows. By providing a warm start value, the oscillations can be
significantly smoothened out [20], but this technique is beyond
the scope of this paper.

Fig. 4. Comparison between the lower bound and the objective value for each
iteration of the Column Generation algorithm in the 3-bus case.

Fig. 5. Comparison between the lower bound and the objective value for each
iteration of the Column Generation algorithm in the 5-bus case.

Fig. 7 shows the main feature of the DW decomposition.
The three axes represent the Pmin

g minimum and Pmax
g

maximum active power set points of the three generators in the
3-bus case. As the number of vertices in the feasible set scales
with 2n, there are 8 available vertices for this example. The
final power generation is the combination of three vertices,
weighted by their λsp1,i. As anticipated by the convexity
constraint (9), the three λsp1,i variables sum up to 1.
The results for the 3-bus case are summarised in Table III,
where the vertices of Fig. 7 are multiplied by their λsp1,i. By
summing each vertex-λsp1,i couple, the final active power for
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Fig. 6. Comparison between the lower bound and the objective value for each
iteration of the Column Generation algorithm in the 14-bus case.

each generator is computed.

(20,0,0)
λsp1,1 = 0.050

Pg1

Pg2

Pg3

(0,0,0)
λsp1,2 = 0.807

(0,15,0)
λsp1,3 = 0.143

Fig. 7. Representation of the feasible set in the 3-bus case. The assigned
vertices and respective weigths for the active power in the set of three
generators are shown and visually represented by the empty circles.

TABLE III
ACTIVE POWER GENERATION FOR EACH VERTEX AND ASSOCIATED λsp1,n

WEIGHT

Basic variable Vertex Generation [pu]
λsp1,1 0.05 (20, 0, 0) (1.0, 0, 0)
λsp1,2 0.807 (0, 0, 0) (0, 0, 0)
λsp1,3 0.143 (0, 15, 0) (0, 2.145, 0)

Total generation (1.0, 2.145, 0)

IV. CONCLUSION AND FUTURE WORK

The paper presents an innovative method of solving linear
OPF problems by applying the Dantzig-Wolfe decomposition
and the Column Generation method. Although the proof-of-
concept implementation provided in this paper results in higher
computation times, for larger test systems, computational
benefits can be expected, especially through the provision of
warm-start values.
Future work will consist of applying this method to larger
test cases for detailed analysis. In addition, the technique can
be extended to Transmission Network Expansion Planning
(TNEP) problems, where the main source of high computa-
tional times is the presence of binary variables. Relaxing them

for the master problem and applying the DW & CG method to
the updated TNEP problem by means of only adding binary
variables for most the relevant variables/columns can lead to
improved performance in terms of computational time.
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