

This project has received funding from the European Union's Horizon2020 research and innovation programme under grant agreement N° 863819

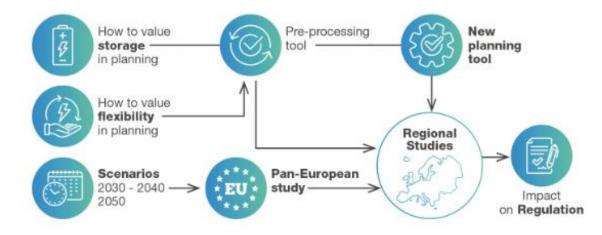
#### FlexPlan

RC France & Benelux workshop| 6<sup>th</sup> March 2023

RC France & Benelux – Modelling and results

Hakan Ergun, Oscar Damanik, Giacomo Bastianel

# Agenda


- Introduction
- Grid modelling
- Scenario data
- Results and analysis

# Agenda

- Introduction
- Grid modelling
- Scenario data
- Results and analysis

# The FlexPlan project

Main objective: Establishing a new grid planning methodology considering the opportunity to introduce new storage and flexibility resources in electricity transmission and distribution grids as an alternative to building new grid elements



#### **Partners**

Poject Coordinator RSE, Italy (Project Coordinator)

#### **Research Partners:**

EKC, Serbia - KU LEUVEN, Belgium - N-SIDE, Belgium R&D NESTER, Portugal - SINTEF, Norway TECNALIA, Spain - TU DORTMUND, Germany VITO, Belgium

#### Transmission System Operators:

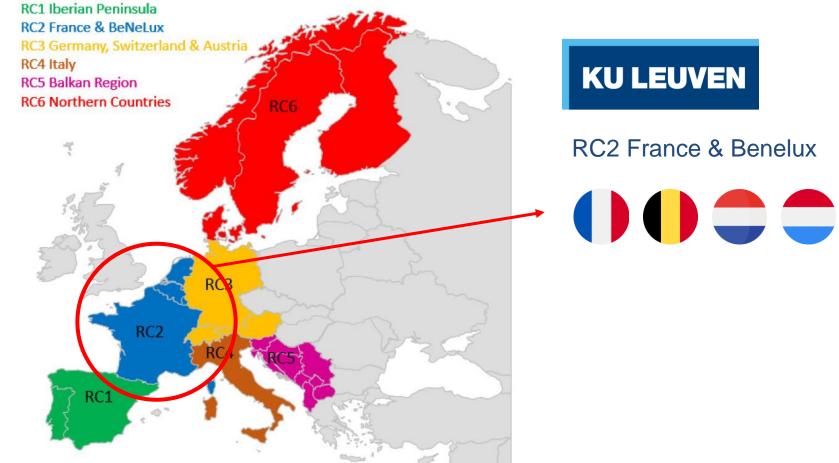
TERNA, Italy - REN, Portugal ELES, Slovenia

Distribution System Operators ENEL Global Infrastructure and Networks

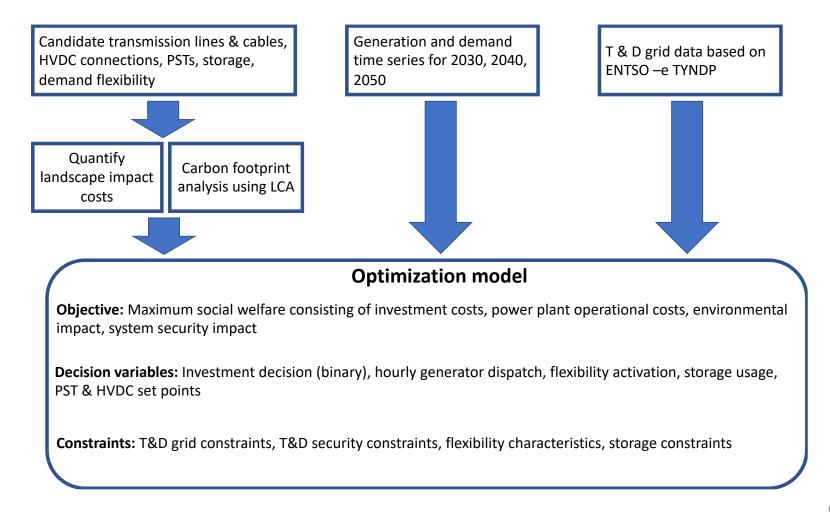
Linked third Parties: TERNA Rete Italia E-distribuzione

#### FlexPlan

#### Stakeholders' board:


Amprion, ARERA, CEER

CINELDI, CYBER-GRID CLEANTECH, E-CONTROL EMPOWER, EDSO, EDYNA EERA Joint Programme Smart Grids Elering, ELIA, Energinet, ENTSO-E EURELECTRIC, FEEM FSR (Florence School of Regulation) ISGAN Annex VI, JRC Red Electric de Espana SmartWires, SwissGrid T&D Europe, Wind Europe


# The FlexPlan project

#### FlexPlan

Regional cases



# The FlexPlan planning methodology



#### FlexPlan Optimization objective – General structure

- The maximum social welfare objective formulated as a cost minimization
  - Quantification of potential benefits not straight-forward without market assumptions
  - Danger of double counting benefits / costs due to complex flow of money
  - Eventually, all cost needs to be borne by consumers in some in way
- Objective function structure:

| • min $\sum_{y} [\sum_{t} \sum_{t}]$ | $(C_{y,t,i}) +$                                 | $\sum_{y,j} \alpha_{y,j} (C_{y,t,j}) +$       | $\widetilde{U}_{y,t,c}\Delta t \sum_{c} C_{u,t,y}^{voll} \Delta P_{u,c,t,y} ]$ | + $\sum_{j} \alpha_{y,j} I_{y,j}$ ]                                                                                                                                                                                         |
|--------------------------------------|-------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | Operational<br>cost of<br>existing<br>equipment | Operational cost<br>of candidate<br>equipment | Expected cost due to<br>outages                                                | CAPEX of<br>candidate<br>equipment<br>i set of existing equipment<br>j set of candidate equipment<br>α binary decision variable<br>tset operational time points (8760h)<br>y set of planning horizons (2030, 2040,<br>2050) |

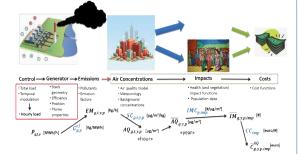
• Environmental impact cost considered as part of operational and CAPEX cost

# Detailed formulation of the objective function

$$\min \sum_{s} \pi_{s} \left\{ \sum_{y \in S_{y}} f_{y}^{d,o} \left\{ \sum_{l \in S_{lc}} \left[ C_{g,y}^{aq} + \left( \theta^{CO_{2}}G^{pf} + \theta^{f} \right) \eta_{g}^{f} \right] P_{g,t,y,s} + C_{g,y}^{res,curt} \Delta P_{g,t,y,s}^{res} + \right. \\ \left. \sum_{j \in S_{l}} \left[ C_{j,t,y}^{abs} P_{j,t,y,s}^{abs} + C_{j,t,y}^{inj} P_{j,t,y,s}^{inj} \right] + \sum_{j \in S_{lc}} \left[ C_{lc,t,y}^{abs} P_{lc,y,s}^{abs} + C_{lc,t,y}^{inj} P_{l,c,y,s}^{inj} \right] + \right. \\ \left. \sum_{t \in S_{t}} \left[ C_{u,t,y}^{nce} \left( P_{u,t,y,s}^{ref} - P_{u,t,y,s}^{nce} \right) + C_{u,t,y}^{ds} \left( \Delta P_{u,t,y,s}^{ds,up} + \Delta P_{u,t,y,s}^{ds,dn} \right) + C_{u,t,y}^{lc} \Delta P_{u,t,y,s}^{lc} \right] + \right. \\ \left. \sum_{u \in S_{u}} \left[ C_{u,t,y}^{nce} \left( P_{u,t,y,s}^{ref} - P_{u,t,y,s}^{nce} \right) + C_{u,t,y}^{ds} \left( \Delta P_{u,t,y,s}^{ds,up} + \Delta P_{u,t,y,s}^{ds,dn} \right) + C_{u,t,y}^{lc} \Delta P_{u,t,y}^{lc} \right) + \right. \\ \left. \left. \sum_{i \in S_{u}} \left( C_{i,t,y}^{ref} (P_{i,t,y,s}^{ref} - P_{u,t,y,s}^{nce}) + C_{u,t,y,s}^{lc} + C_{u,t,y}^{lc} \Delta P_{u,t,y,s}^{lc} \right) + \right. \\ \left. \sum_{i \in S_{u}} \left( C_{i,t,y}^{ref} (P_{i,t,y,s}^{ref} + C_{i,t,y}^{lc}) + C_{u,t,y}^{lc} \Delta P_{u,t,y,s}^{lc} \right) + \left. \sum_{i \in S_{u}} \left( C_{i,t,y}^{ref} (P_{i,t,y,s}^{ref} + C_{u,t,y,s}^{lc}) + C_{u,t,y}^{lc} \Delta P_{u,t,y,s}^{lc} \right) + \left. \sum_{i \in S_{u}} \left( C_{i,t,y}^{ref} (P_{i,t,y,s}^{ref} + C_{u,t,y,s}^{ref}) + C_{u,t,y,s}^{lc} + C_{u,t,y}^{lc} \Delta P_{u,t,y,s}^{lc} \right) + \left. \sum_{i \in S_{u}} \left( C_{i,t,y}^{ref} (P_{i,t,y,s}^{ref} + C_{i,t,y}^{ref}) + C_{u,t,y,s}^{lc} + C_{u,t,y}^{lc} \Delta P_{u,t,y,s}^{lc} \right) + \left. \sum_{i \in S_{u}} \left( C_{i,t,y}^{ref} (P_{i,t,y,s}^{ref} + C_{i,t,y}^{ref}) + C_{i,t,y}^{lc} + C_{i,t,y}^{ref} + C_{i,t,y}^{lc} \right) \right\} \right\} \right\} \right\}$$

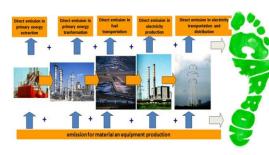
Model dimensions:

- Set of grid elements (x1000)
- Set of planning hours (8760)
- Set of planning years (2030 – 2040 - 2050)
- Set of planning scenarios


MILP problems will millions of decision variables and constraints

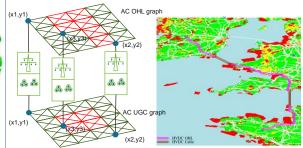


Model decompositions are needed!


# **Environmental impact modelling**

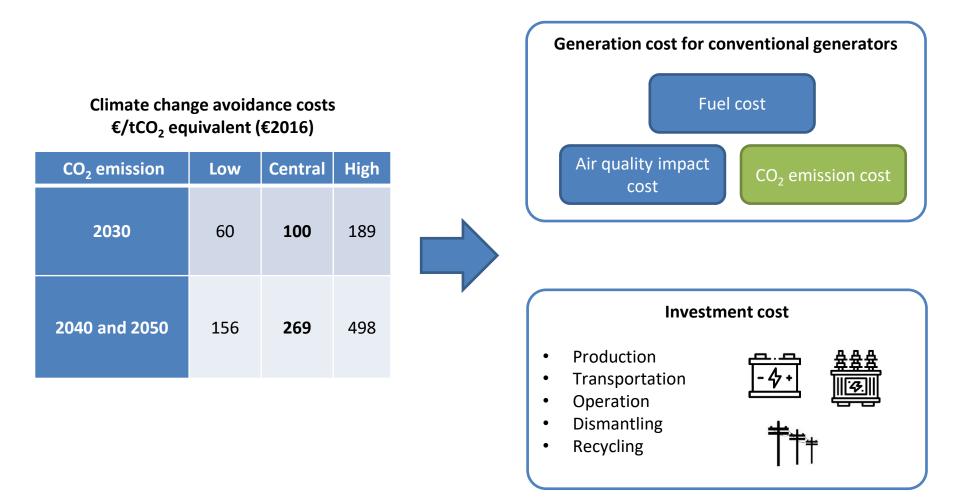
Air quality impact modelling



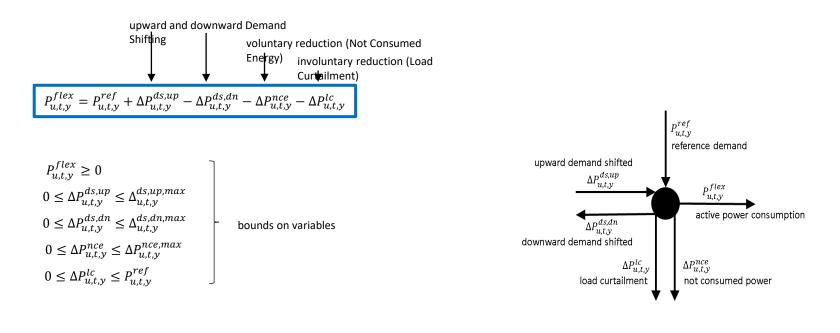

Linearized model quantifying air quality impact related costs in dependence of generation

#### Carbon footprint modelling




CO<sub>2</sub> emission cost of power generation as direct input, CO<sub>2</sub> impact of new grid investments using LCA

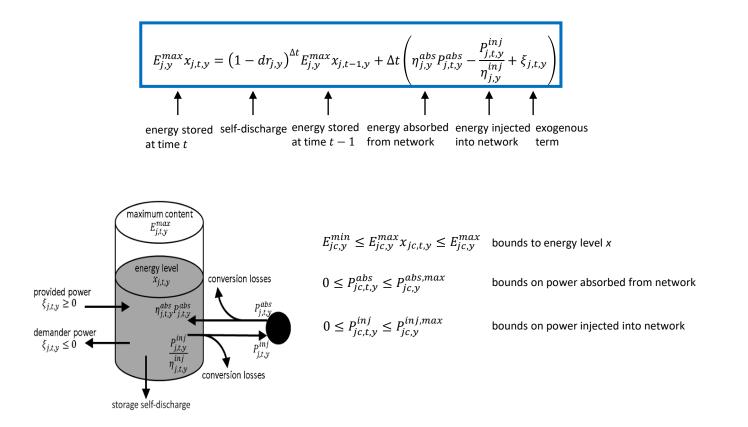
#### Landscape impact modelling



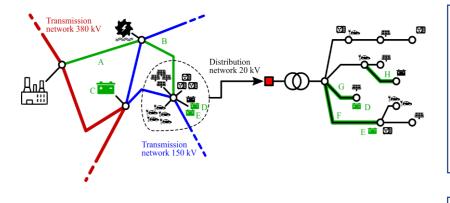

Using optimal routing routing algorithm quantifying landscape impact cost for OHL and cable investments

# Environmental impact scenarios

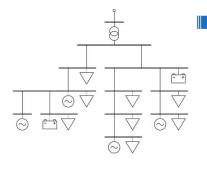



## Flexible load modelling




$$\sum_{t \in \{\tau - T^r + 1, \dots, \tau\}} \left( \Delta P_{u,t,y}^{ds,up} - \Delta P_{u,t,y}^{ds,down} \right) = 0 \quad \forall \tau : \tau \bmod T^r = 0$$

upward and downward demand shifts are rebalanced every  $T^r$  periods


# Storage modelling



#### FlexPlan Transmission and distribution grid modelling



**Original distribution network** 



#### Surrogate model



#### Components

- one generator
- one storage device
- one flexible load

#### Component parameters such that:

- feasibility implies feasibility in original model
- cost approximates cost in original model


In order to maintain computational tractability, linearized models are adopted:

- DC approximation for AC/DC transmission grids
- linearized approach (DISTFLOW-like) simplifying but not eliminating reactive power for distribution grids
- Synthetic distribution grids are generated on the basis of few metrics/statistics of real networks

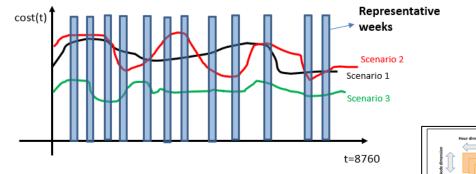
The grid model is decomposed into TNEP and DNEP.

- 1. Compute one surrogate model for each distribution network
- 2. Run TNEP problem with the surrogate distribution networks attached to calculate optimal solution for transmission network, costs related to transmission network, power exchanges between transmission and distribution networks
- 3. Fix power exchanges and run DNEP problem for each distribution network to calculate optimal solution for distribution networks and costs related to distribution networks

## **Stochastic optimisation**



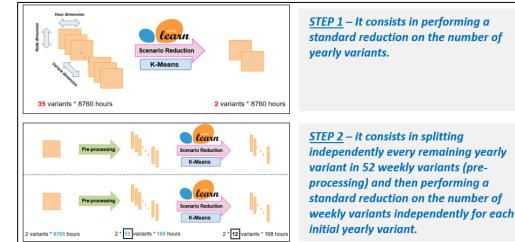
**Climate variants of 35 years** (variability of RES time series and load time series) are considered in the framework of a stochastic optimisation.

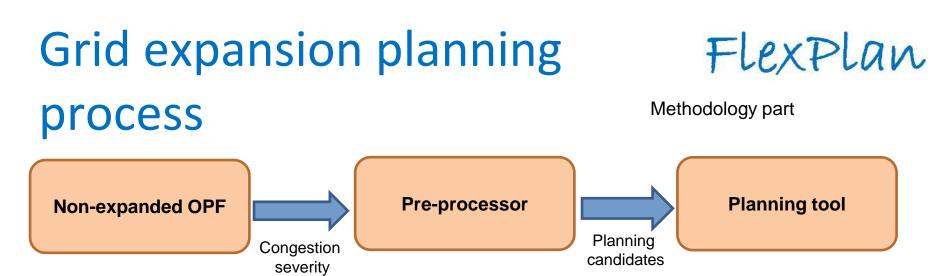

The number of combinations is reduced to two by using **clustering-based scenario reduction techniques**.

Adopting a Monte Carlo approach would present a modeling problem: if every Monte Carlo run is executed separately, then investment decisions are taken separately and there is a problem in putting together results that can be substantially diverging.

So, the dispatch costs of the different variants are weighted together in the target function, each with their own probability (**stochastic optimization**).

In order to retain numerical tractability, the dispatch calculation of the different variants is split by using the **Benders' decomposition**. Such methodology allows to decompose a master problem dealing with the investment decisions from the optimum dispatch calculation for each Monte Carlo variant and for all target years.


# Reduction of the model size through clustering

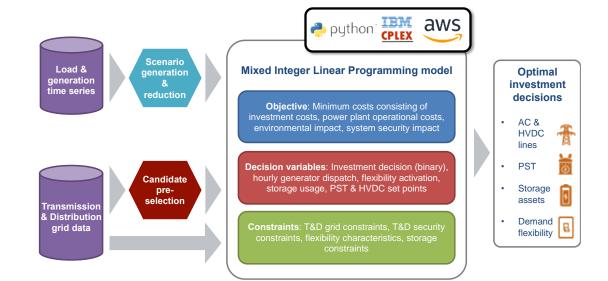


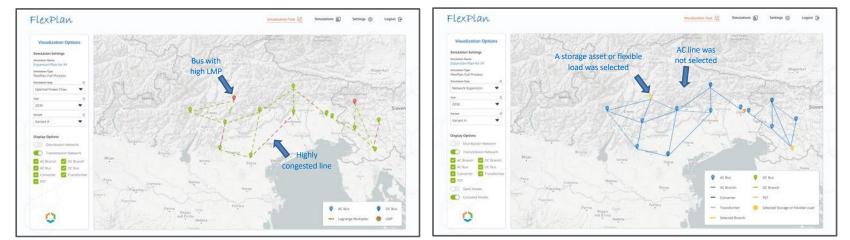

A two-step approach is adopted in order to:

- select 12 representative weeks
- reduce 35 climatic variants to 2 equivalent ones:

In order to simplify the problem, only a few representative weeks are selected







- Role of the non-expanded Optimal Power Flow
  - Simulation of the scenario and indication of the level of congestion for grid elements

#### • Role of Pre-processor

- Identification of potential asset investments aimed at solving congestion (with priorities depending on congestion severity – Lagrange Multipliers)
- Identification of nodes in which storage/demand flexibility can be beneficial for congestion management (using Locational Marginal Prices)
- Proposal of storage technology based on characteristics of congestions and territory
- Role of **Planning tool** 
  - Returns the list of the candidates which minimizes the total costs (CAPEX+OPEX), and details on their behavior

#### The FlexPlan planning tool





### FlexPlan model – Opensource implementation Electa-git / FlexPlan.jl

#### 🕟 v0.3.0 (Latest) on Dec 19, 2022 0 i \_\_\_\_ README.md + 5 releases FlexPlan.jl Packages Status: CI passing O Documentation passing coverage 729 No packages published Publish your first package **Overview** FlexPlan.jl is a Julia/JuMP package to carry out transmission and distribution network planning Contributors 9 considering AC and DC technology, storage and demand flexibility as possible expansion candidates. (A) 💽 🌍 Clecta 💕 Using time series input on renewable generation and demand, as well a list of candidates for grid expansion, a mixed-integer linear problem is constructed which can be solved with any commercial or

open-source MILP solver. The package builds upon the PowerModels and PowerModelsACDC packages, and uses a similar structure.

Some modelling features are:

- · Joint multistage, multiperiod formulation to model a number of planning years, and planning hours within years for a sequential grid expansion plan.
- Stochastic formulation of the planning problem, based on scenario probabilities for a number of different time series.
- Extensive, parametrized models for storage, demand flexibility and DC grids.
- Linearized DistFlow model for radial distribution networks, considering reactive power and voltage

| github-pages Active | github-pages Active | Environments 1     |        |  |
|---------------------|---------------------|--------------------|--------|--|
|                     | Languages           | <br>纪 github-pages | Active |  |
|                     | Languages           |                    |        |  |
|                     |                     |                    |        |  |

# Agenda

- Introduction
- Grid modelling
- Scenario data
- Results and analysis

# Grid modelling

- Data sources
- Data processing
- France & Benelux regional case

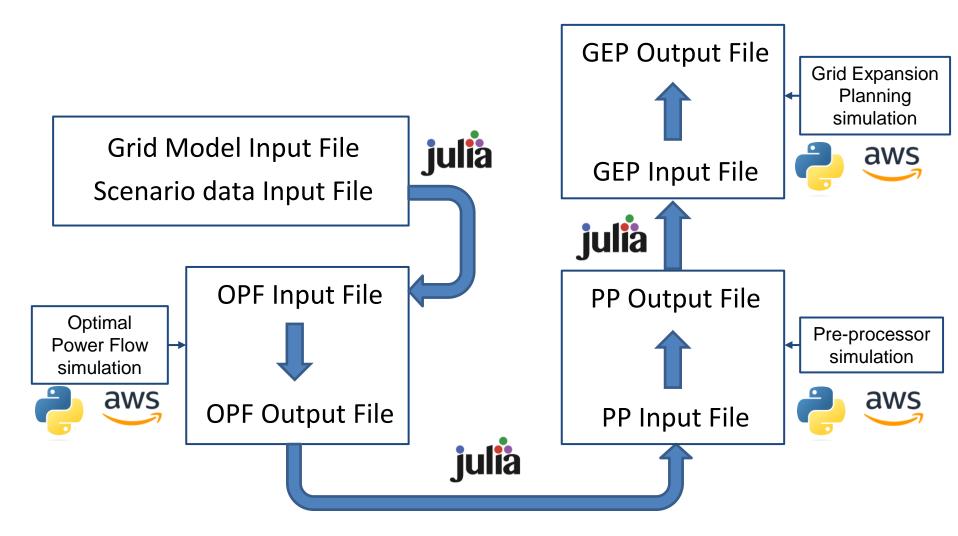
- Applied grid simplifications
- Assumptions
- Synthetic distribution networks

#### Data sources

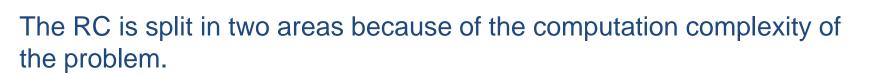


• France and Benelux grids: ENTSO-E TYNDP data

The modelling data for Benelux and French grid was provided initially in the PSS/E (.raw) format.


The data was converted to PowerModels.jl dictionaries for testing using an Optimal Power Flow (OPF) and further processing.




## Data processing



For each planning year (2030,2040,2050):

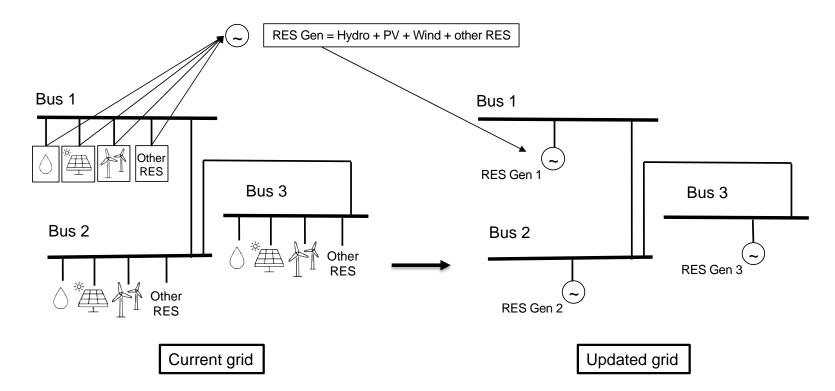


#### France & Benelux regional case



After simplifications:



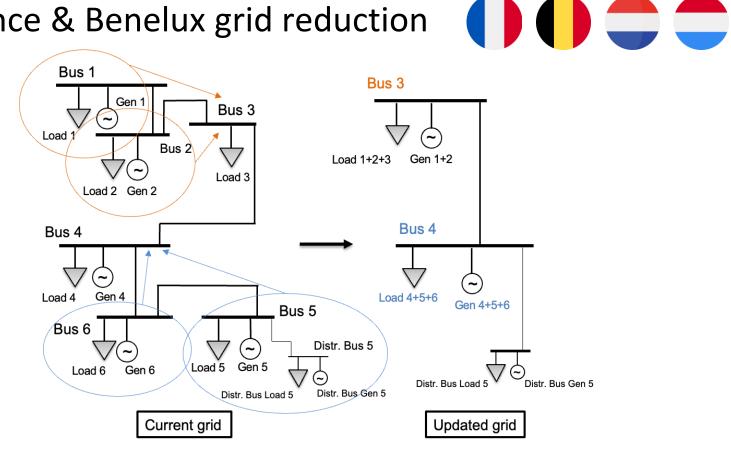



|                                  | France |
|----------------------------------|--------|
| Number of nodes                  | 6649   |
| of which in transmission network | 2665   |
| of which in distribution network | 3984   |
| Number of AC branches            | 6662   |
| of which in transmission network | 2922   |
| of which in distribution network | 3740   |
| Number of transformers           | 868    |
| Number of storages               | 6      |
| Number of loads                  | 3212   |

|                                  | BeNeLux |
|----------------------------------|---------|
| Number of nodes                  | 3607    |
| of which in transmission network | 2390    |
| of which in distribution network | 1217    |
| Number of AC branches            | 3181    |
| of which in transmission network | 2069    |
| of which in distribution network | 1112    |
| Number of transformers           | 1128    |
| Number of storages               | 2       |
| Number of loads                  | 1315    |

# Applied grid simplifications

French grid reduction




FlexPlan

All RES sources are combined in a single RES generator for each bus without losing information

# **Applied grid simplifications**

France & Benelux grid reduction

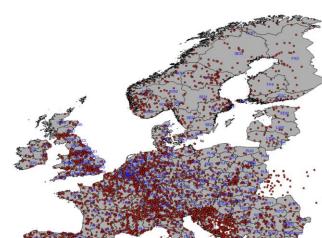


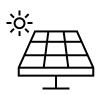
- The grid is reduced in sub-areas where buses, load and generators are combined •
- Applied to selected buses .
- The didstribution neworks are attached to the reduced bused without further reductions .

## Assumptions

#### FlexPlan

Grid Model input file:


- Value Of Loss Load (VOLL): 50 k€/MWh
- Generation curtailment cost: 235.6 €/MWh
  Highest generation cost among the generators
- Generation cost: varying between 0 and 235.6 €/MWh
- Storage efficiency: 90%


# Agenda

- Introduction
- Grid modelling
- Scenario data
- Results and analysis

# Time series from MILES

- MILES (Model of International Energy Systems) provides time series on regional level:
  - Renewable energy series:
    - Solar
    - Wind
    - Hydro reservoir
    - Hydro run of river (RoR)
    - Other renewable energy sources
  - Cross-border flows
- Time series are generated based on the TYNDP 2020 scenarios:
  - Distributed energy (DE)
  - Global ambition (GA)
  - National trend (NT)
- More details are provided in Deliverables 4.1 and 4.2

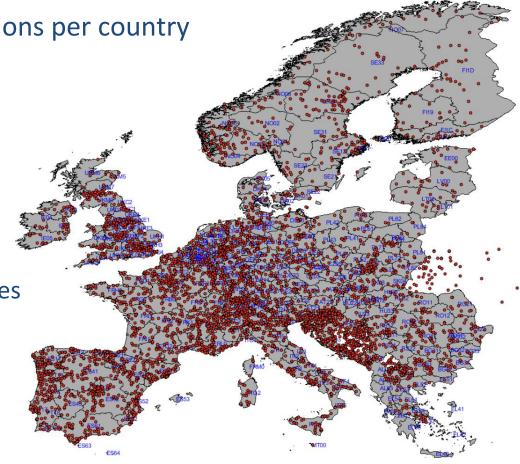











### Data sources

• France and Benelux data series: MILES data

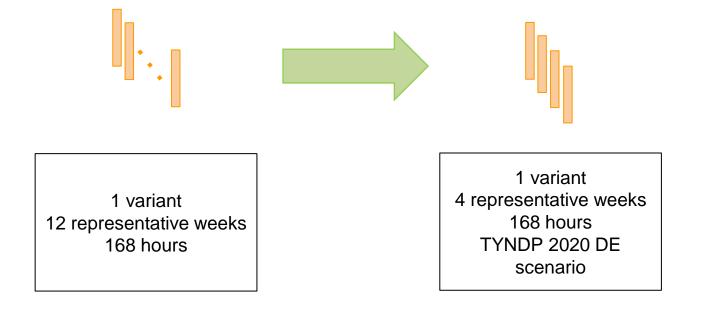
Number of considered sub-regions per country per regional case:

France: 766 Netherlands: 37 Luxembourg: 11 Belgium: 46

The MILES detailed output provides the installed generation capacity for each node of the transmission grid provided by ENTSO-E as an individual sub-region of the pan-EU results.

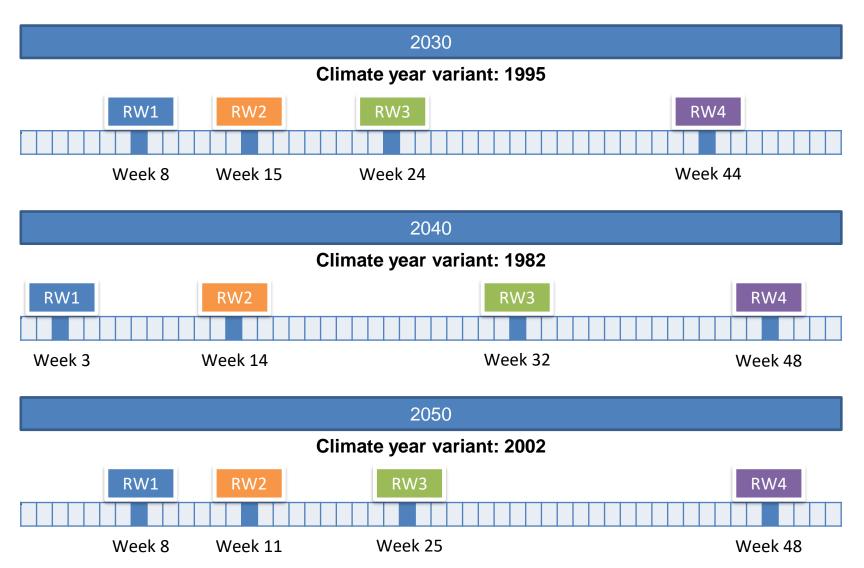


Transmission grid nodes in Europe considered as sub-region in MILES


## **Scenario reduction**

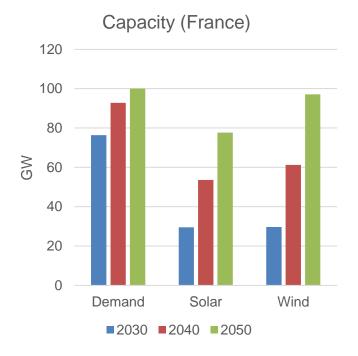
#### Hour dimension Node dimension learn learn **Scenario Reduction** K-Means Variant dimension Scenario Reduction **K-Means Pre-processing** 1 variant 35 variants 1 variant 12 representative weeks 8760 hours 8760 hours 168 hours

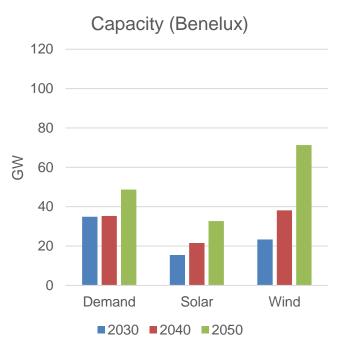
This process is conducted for all TYNDP 2020 scenarios


## **Scenario reduction**

#### FlexPlan




To reduce the size of the model further, the selected scenario is only based on the **distributed energy (DE)** scenario of TYNDP 2020


## Scenario overview

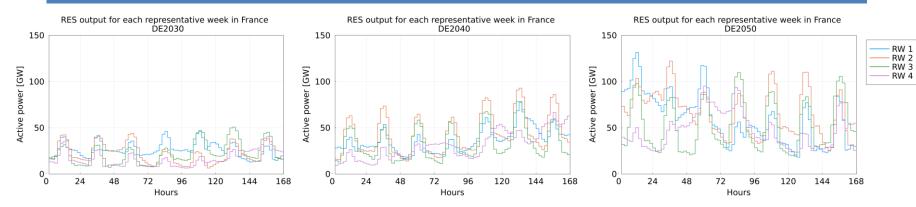


## Scenario overview

#### Demand and RES generation capacity in each year





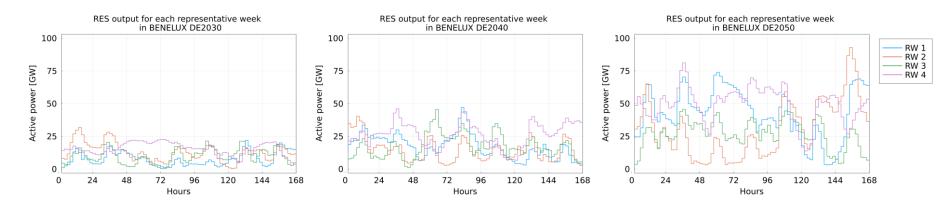

#### **Time series - France**

Active power [GW]

#### Demand Demand for each representative week in France Demand for each representative week in France Demand for each representative week in France DE2030 DE2040 DE2050 **RW 1 RW 2** Active power [GW] 00 00 **RW 3** Active power [GW] **RW 4** Hours Hours Hours

FlexPlan

RES




#### **Time series - Benelux**

#### Demand Demand for each representative week in BENELUX Demand for each representative week in BENELUX Demand for each representative week in BENELUX DE2030 DE2040 DE2050 RW 1 RW 2 RW 3 Active power [GW] Active power [GW] Active power [GW] RW 4 Hours Hours Hours

FlexPlan

RES



# Agenda

- Introduction
- Grid modelling
- Scenario data
- Results and analysis

## **Overview of simplification**

| Grid model                                                  | Scenario data                               | Simulation setup            |
|-------------------------------------------------------------|---------------------------------------------|-----------------------------|
| Grid simplification by reducing the number of grid elements | 1 climate year variant                      | MIP optimality gap of 0.01% |
| 5% of distribution networks                                 | 1-decade time horizon instead<br>of 3       |                             |
| ~100 planning candidates                                    | 4 representative weeks instead<br>of 12     |                             |
|                                                             | 2-hour time resolution instead<br>of 1 hour |                             |

### Results – Cost overview

#### Total cost summary (France) 2.400 B€ 2,146 B€ 2.000 B€ 1,554 B€ 1.600 B€ 1.423 B€ 1.247 B€ 1,237 B€ 1,200 B€ 782 B€ 800 B€ 400 B€ 0 B€ OPF 2030 GFP 2030 OPF 2040 GEP 2040 OPF 2050 GFP 2050

#### Total cost summary (Benelux) 2.400 B€ 2.000 B€ 1.600 B€ 1,117 B€ 1.200 B€ 800 B€ 532 B€ 454 B€ 434 B€ 400 B€ 247 B€ 180 B€ 0 B€ OPF 2030 GFP 2030 OPF 2040 GEP 2040 OPF 2050 GFP 2050

#### The total costs decrease after performing grid expansion planning

#### In general, the total costs increase each year

Special case for Benelux from 2030 to 2040: the total cost decreases because many load curtailments are resolved in 2030 without significant increase of demand



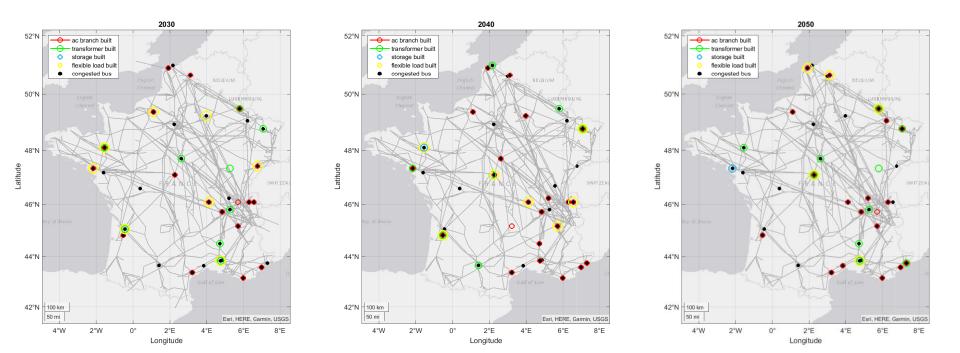
#### **Investment overview: candidates**

#### France

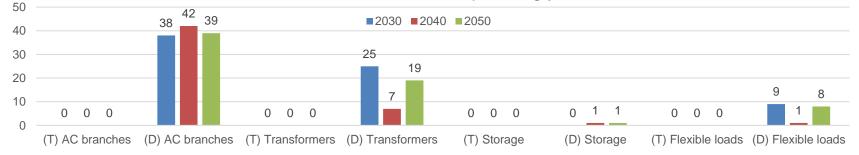
- Transmission candidates are added manually in 2040 and 2050
- No transmission candidates are built

#### **Benelux**

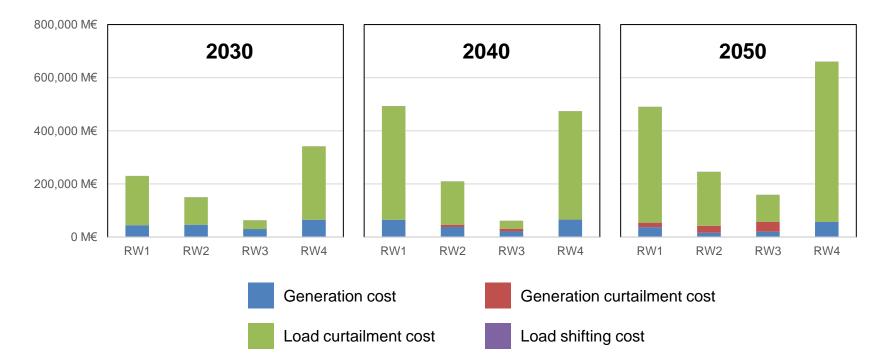
FlexPlan


Due to some feasibility issues (some candidates are problematic):

- Limited to 85 candidates in 2030 and 2050
- Limited to 65 candidates in 2040

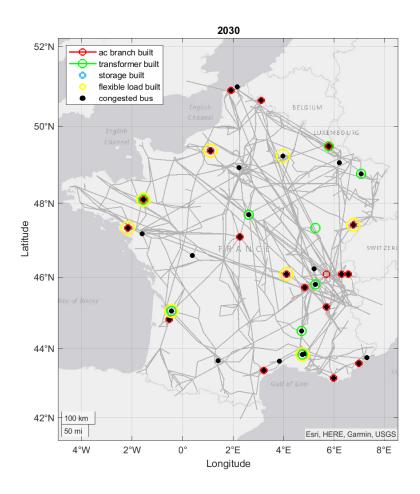



#### FlexPlan


#### **GEP France – Overview**



#### Built candidates in each planning year




### GEP France – Share of total FlexPlan GEP costs

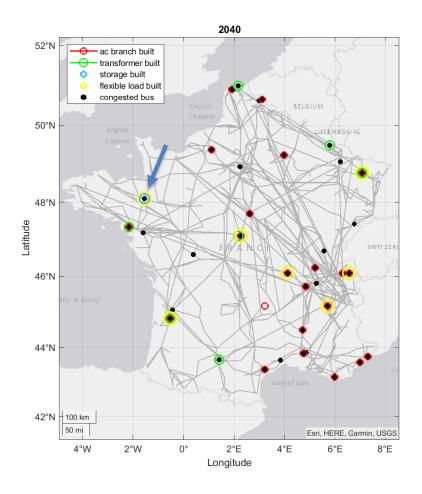


- In general, the total costs are higher in the autumn/winter weeks (RW1 and RW4) than in the spring/summer weeks (RW2 and RW3)
- The load curtailment cost accounts for most of the total costs
- The generation curtailment cost appear in 2040 and increase in 2050 due to the increase of renewable energy capacity

### GEP France – 2030



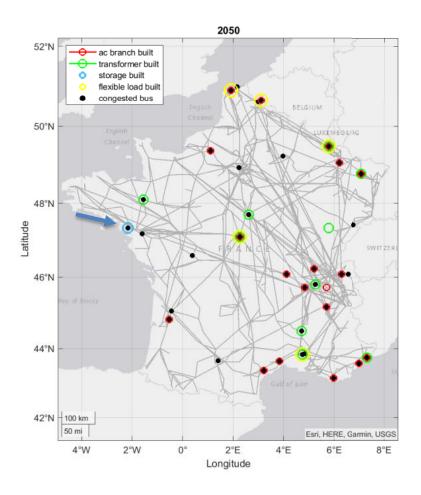
| Description of the candidates (T = transmission, D = distribution) |                 |                 |         |                     |
|--------------------------------------------------------------------|-----------------|-----------------|---------|---------------------|
| Туре                                                               | AC Branch       | Transformer     | Storage | Flexibility<br>load |
| Total                                                              | 60              | 25              | 0       | 15                  |
| Built                                                              | 0 (T)<br>38 (D) | 0 (T)<br>25 (D) | 0       | 0 (T)<br>9 (D)      |
| Rejected                                                           | 0 (T)<br>22 (D) | 0 (T)<br>0 (D)  | 0       | 0 (T)<br>6 (D)      |
| Cost (€)                                                           | 625445          | 1863393         | 0       | 9000                |


FlexPlan

Generally, we can see the candidates are in proximity to the identified congested buses

 Congestions mostly occur in the distribution networks

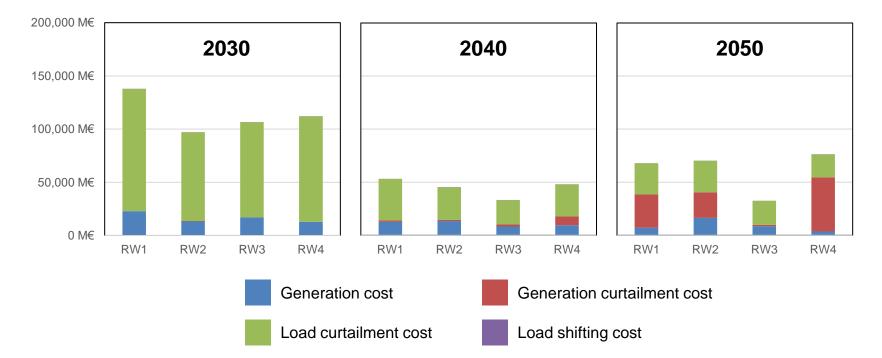
- No transmission candidates
- No storage candidates


### GEP France – 2040



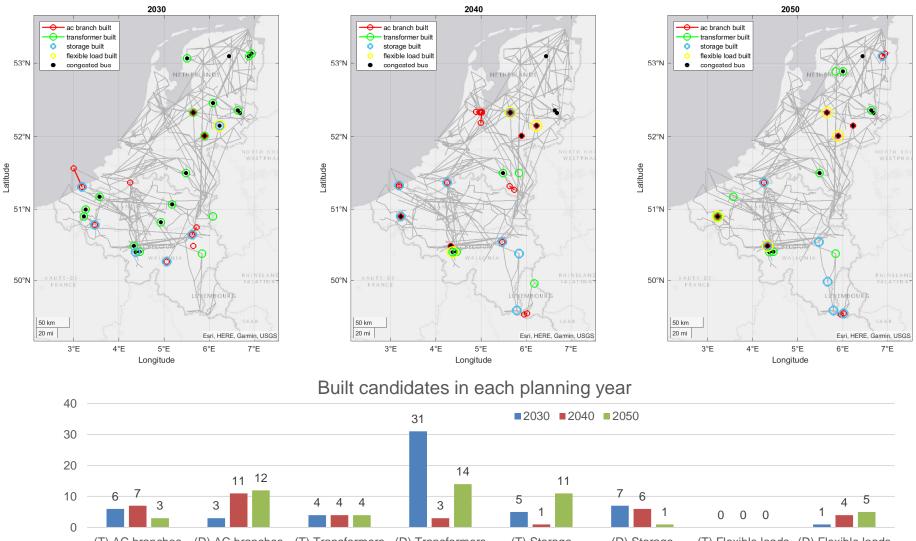
| Description of the candidates (T = transmission, D = distribution) |                 |                |                |                     |
|--------------------------------------------------------------------|-----------------|----------------|----------------|---------------------|
| Туре                                                               | AC Branch       | Transformer    | Storage        | Flexibility<br>load |
| Total                                                              | 79              | 7              | 1              | 13                  |
| Built                                                              | 0 (T)<br>42 (D) | 0 (T)<br>7 (D) | 0 (T)<br>1 (D) | 0 (T)<br>8 (D)      |
| Rejected                                                           | 6 (T)<br>31 (D) | 0 (T)<br>0 (D) | 0 (T)<br>0 (D) | 0 (T)<br>5 (D)      |
| Cost (€)                                                           | 1006757         | 1378346        | 215120         | 8000                |

- The congested buses are on similar locations as in 2030
- No transmission candidates
- 1 storage candidate on the distribution level (Rennes)


### GEP France – 2050



| Description of the candidates (T = transmission, D = distribution) |                 |                 |                |                     |
|--------------------------------------------------------------------|-----------------|-----------------|----------------|---------------------|
| Туре                                                               | AC Branch       | Transformer     | Storage        | Flexibility<br>load |
| Total                                                              | 67              | 19              | 2              | 12                  |
| Built                                                              | 0 (T)<br>39 (D) | 0 (T)<br>19 (D) | 0 (T)<br>1 (D) | 0 (T)<br>8 (D)      |
| Rejected                                                           | 6 (T)<br>22 (D) | 0 (T)<br>0 (D)  | 0 (T)<br>1 (D) | 0 (T)<br>4 (D)      |
| Cost (€)                                                           | 748803          | 2246660         | 201600         | 8000                |

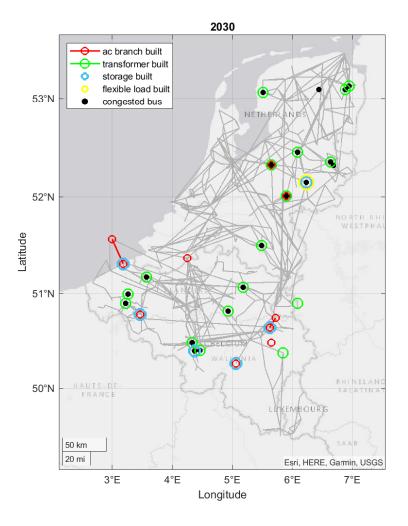

- The candidates are still dominated by distribution ac branches
- One built storage candidate (Nantes) and one rejected storage candidate on the distribution level

### GEP Benelux – Share of total FlexPlan GEP costs



- Similar to the French case, the total costs are higher in the autumn/winter weeks (RW1 and RW4) than in the spring/summer weeks (RW2 and RW3) although the differences are less significant than in the French case
- The load curtailment costs account for most of the total costs with a notable decrease in 2040
- The generation curtailment costs significantly increase in 2050. However, we can also see that the total generation cost in 2050 is overall reduced.

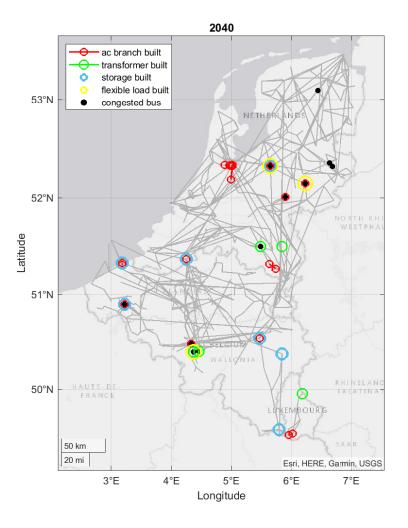
### **GEP Benelux – Overview**




(T) AC branches (D) AC branches (T) Transformers (D) Transformers

(T) Storage (D) Storage (T) Flex

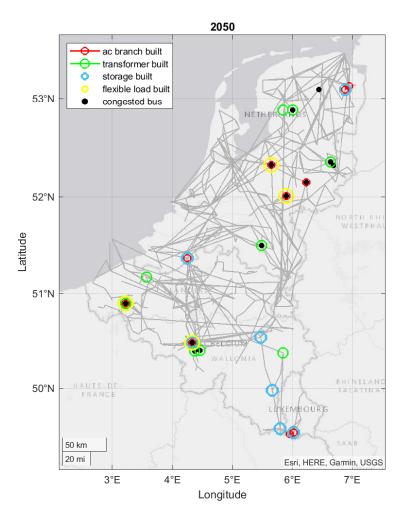
(T) Flexible loads (D) Flexible loads


### GEP Benelux – 2030



| Description of the candidates (T = transmission, D = distribution) |                |                 |                |                     |
|--------------------------------------------------------------------|----------------|-----------------|----------------|---------------------|
| Туре                                                               | AC Branch      | Transformer     | Storage        | Flexibility<br>load |
| Total                                                              | 13             | 35              | 19             | 18                  |
| Built                                                              | 6 (T)<br>3 (D) | 4 (T)<br>31 (D) | 5 (T)<br>7 (D) | 0 (T)<br>1 (D)      |
| Rejected                                                           | 0 (T)<br>4 (D) | 0 (T)<br>0 (D)  | 0 (T)<br>7 (D) | 3 (T)<br>14 (D)     |
| Cost (€)                                                           | 625445         | 1863393         | 0              | 9000                |

- Compared to the French case, more congestions are identified on the transmission level
- Built candidates are mostly transformers, scattered around the network, to relieve congestions both in the transmission and distribution networks


### GEP Benelux – 2040



| Description of the candidates (T = transmission, D = distribution) |                 |                |                |                     |
|--------------------------------------------------------------------|-----------------|----------------|----------------|---------------------|
| Туре                                                               | AC Branch       | Transformer    | Storage        | Flexibility<br>load |
| Total                                                              | 28              | 7              | 19             | 11                  |
| Built                                                              | 7 (T)<br>11 (D) | 4 (T)<br>3 (D) | 1 (T)<br>6 (D) | 0 (T)<br>4 (D)      |
| Rejected                                                           | 2 (T)<br>8 (D)  | 0 (T)<br>0 (D) | 5 (T)<br>7 (D) | 2 (T)<br>5 (D)      |
| Cost (€)                                                           | 3389394         | 3384234        | 12638730       | 4000                |

- Most congestions occur on the distribution network
- More storage candidates are built in the distribution network

### GEP Benelux – 2050



| Description of the candidates (T = transmission, D = distribution) |                 |                 |                 |                     |
|--------------------------------------------------------------------|-----------------|-----------------|-----------------|---------------------|
| Туре                                                               | AC Branch       | Transformer     | Storage         | Flexibility<br>load |
| Total                                                              | 33              | 18              | 20              | 14                  |
| Built                                                              | 3 (T)<br>12 (D) | 4 (T)<br>14 (D) | 11 (T)<br>1 (D) | 0 (T)<br>5 (D)      |
| Rejected                                                           | 7 (T)<br>11 (D) | 0 (T)<br>0 (D)  | 2 (T)<br>6 (D)  | 4 (T)<br>5 (D)      |
| Cost (€)                                                           | 889368          | 6852213         | 30354082        | 5000                |

- More storage candidates are built in the transmission network
- More storage units are closer to the border with Luxembourg

### Conclusion

 The FlexPlan planning methodology has been demonstrated on the French and Benelux electrical networks

- Several assumptions and simplifications have been made to complement available data and feasible model outcomes
  - Results can only be interpreted as indicative
- The results show that the investments in the form of AC branches, transformers, storage units, and flexible loads from the pre-processor tool reduce the total operation costs in each planning year
- There are limitations to demonstrate results close to reality due to the accuracy of the data. This, however, can be improved through more collaborations with the stakeholders in the future as a follow-up on the project



#### FlexPlan







**Contacts:** 

hakan.ergun@kuleuven.be oscar.damanik@kuleuven.be giacomo.bastianel@kuleuven.be

# FlexPlan

FlexPlan



#### FlexPlan-Project.eu

This presentation reflects only the author's view and the Innovation and Networks Executive Agency (INEA) is not responsible for any use that may be made of the information it contains.