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About FlexPlan 

 

The FlexPlan project aims at establishing a new grid planning methodology considering the opportunity to 

introduce new storage and flexibility resources in electricity transmission and distribution grids as an 

alternative to building new grid elements. This is in line with the goals and principles of the new EC package 

Clean Energy for all Europeans, which emphasizes the potential usage of flexibility sources in the phases of 

grid planning and operation as alternative to grid expansion. In sight of this, FlexPlan creates a new innovative 

grid planning tool whose ambition is to go beyond the state of the art of planning methodologies, by including 

the following innovative features: integrated T&D planning, full inclusion of environmental analysis, 

probabilistic contingency methodologies replacing the N-1 criterion as well as optimal planning decision over 

several decades. However, FlexPlan is not limited to building a new tool but it also uses it to analyse six 

regional cases covering nearly the whole European continent, aimed at demonstrating the application of the 

tool on real scenarios as well as at casting a view on grid planning in Europe till 2050. In this way, the FlexPlan 

project tries to answer the question of which role flexibility could play and how its usage can contribute to 

reduce planning investments yet maintaining (at least) the current system security levels. The project ends up 

formulating guidelines for regulators and for the planning offices of TSOs and DSOs. The consortium includes 

three European TSOs, one of the most important European DSO group, several R&D companies and 

universities from 8 European Countries (among which the Italian RSE acting as project coordinator) and N-

SIDE, the developer of the European market coupling platform EUPHEMIA.  
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Executive Summary 

This document describes the Monte Carlo (MC) scenario generation and reduction methodology developed 

within the FlexPlan project. The developed methodology is used to first generate a large variety nodal 

generation and demand scenarios in terms of hourly time series, respectively. The generated time series are 

further reduced to a representative set of time series which are used as input for the advanced planning tool 

implemented within FlexPlan.  

The intermittent generation from variable renewable energy sources, the generation of hydro power 

plants and the electricity demand are considered as stochastic inputs with respect to the grid expansion 

planning problem. FlexPlan’s advanced planning approach incorporates storage and demand flexibility as 

alternatives to classical grid expansion. As such, time series data is required as input for the advanced 

planning tool in order to accurately represent the intertemporal constraints linked to the operational 

characteristics of demand flexibility and storage. Thus, the developed scenario generation and reduction 

methodology needs to provide hourly time series for all stochastic inputs of the planning problem at hand. 

The developed methodology and implemented prototype consist of the following building blocks: 

 A geographic reference system based on approximately 290 locations in Europe for time series 

data 

 A database, containing meteorological and hydrological information for 40 years 

 A time series generator for wind, solar and hydropower generation sampling 

 A time series generator for demand sampling 

 A method to model temporal and spatial correlations of the aforementioned time series 

 A methodology to reduce a huge amount of operational scenarios formed by the aforementioned 

generation and load time series to a representative set 

To develop the proposed methodology, significant work has been done on the modelling of temporal and 

spatial correlations between the stochastic inputs influencing expansion planning, on the identification of 

sufficient data sources (considering the limited availability of publicly available high quality historic power 

system data) and on finding a compromise between the required level of detail and the computational 

complexity by modelling uncertainties in large scale expansion planning problems. 

State-of-the art literature was reviewed with regard to the advantages and disadvantages of different 

modeling methods and their suitability to be used in the context of FlexPlan. Furthermore, the designed 

methods for scenario generation and reduction were analyzed and validated for a proof-of-concept test case. 
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1. Introduction 

The transmission and distribution grid planning tool developed within FlexPlan aims at finding optimal 

grid reinforcement and expansion measures including storage and demand flexibility over several decades 

(2030-2040-2050) on a pan-European level and on regional levels. The future energy system analyzed with 

the FlexPlan tool is characterized by a number of long-term visions, describing possible developments of the 

energy system as well as divergent European energy policies. 

The Pan-European scenarios developed in FlexPlan include macro-assumptions on the generation mix and 

the projected demand on a country level. Using the Model of International Energy Systems (MILES) [1] [2] [3] of 

TU Dortmund, these macro-assumptions are broken down to smaller regions. Thus, national installed 

capacities per generation and load category are spatially disaggregated to significantly smaller sub-regions in 

each country (see FlexPlan’s D4.1 [4]). Furthermore, large scale technological trends with regard to 

generation technologies and the development of conventional power plants have been considered as part of 

the Pan-European macro scenarios adopted by FlexPlan. 

The regionalized Pan-EU scenarios describe the evolution of the energy system on a level that is not 

sufficient to carry out detailed grid expansion studies. In order to determine the optimal grid expansion on a 

nodal and zonal level, the pan EU-scenarios have to be disaggregated to individual nodes in the transmission 

and distribution grids such that they can be used by the advanced planning tool. Furthermore, the dependency 

of non-dispatchable units, e.g. wind, solar and partly hydro power generators, on local climatic conditions 

have to be considered in order to obtain realistic results within the regional studies. Therefore, a scenario 

generation approach is used, determining the hourly power generation of non-dispatchable units considering 

uncertainties. To ensure maximum consistency between the macro-assumptions taken within the pan-EU 

scenarios and the detailed nodal operational states considered in the regional cases, the detailed sub-regional 

output of the MILES platform is used as input for the developed Scenario Generation and Reduction Approach 

presented in this deliverable.  

1.1. Situation of this deliverable within the FlexPlan project 

The conceptual block diagram depicted in Figure 1-1 visualizes FlexPlan’s key research questions and the 

intended approach to tackle them. Central questions of the new planning tool’s conceptual design are 

addressed in WP 1. Furthermore, technologies for flexibility provision are analyzed in depth in WP 2 utilizing 

a pre-processor tool to evaluate flexibility elements’ characteristics, e.g. CAPEX, OPEX and expected lifetimes. 

The same pre-processing tool is utilized to provide indications on the sizing and location of storage 

candidates, as well as candidate connections that are finally provided as an input to the optimization model 

implemented in the advanced planning tool of WP 3. 
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In parallel to the development of the new planning tool, Pan-European scenarios are created in WP 4. 

These Pan-EU scenarios are elaborated for the years 2030-2040-2050 based on well-established EU and 

national “visions” as well as on the ENTSO-E's Ten-Year Network Development Plan (TYNDP) [5], European 

targets for the upcoming decades, national regulations and other relevant aspects such as climate targets. The 

developed scenarios consider different restrictions concerning primary energy resources, e.g. coal, gas or 

nuclear fuel, due to sociopolitical and economic aspects. While Pan-EU scenarios study potential key 

indicators affecting system planning and operation, the development of a fully pan-EU optimization of grid 

expansion case would require extensive simplifications due to computational restrictions, which are not 

suitable for detailed network planning studies. 

Thus, starting from the results of the Pan-EU macro-scenarios, six Regional Cases are developed in WP 5 

in order to carry out detailed planning studies for the main European macro-zones considering the 

transmission and distribution grid infrastructure in detail. The preceding WP’s interim results are combined 

in the regional cases to obtain the optimal grid expansion plan for each considered region. To do so, one hand, 

the macro-scenarios in terms of installed generation capacities, power demand and expected interzonal flows 

calculated by WP 4 Pan-EU scenarios are considered as input parameters for the planning tool. On the other 

hand, the pre-processor tool’s results in terms of flexibility characteristics, potential locations of storage 

devices and potential transmission expansion candidates are considered as optimization variables. 

Additionally, the new planning tool of WP 3 that is implemented based on the specifications elaborated in 

WP 1 is utilized to carry out the regional case studies, which includes advanced modelling techniques, in 

particular:  

 Multi criteria optimization 

 Probabilistic security analysis 

 Consideration of environmental aspects 

 Monte-Carlo scenario generation and reduction 

Task 1.4’s scenario reduction approach will be directly integrated in the new advanced planning tool 

that is implemented in WP 3 as an optional module. Thus, potential expansion candidates are identified with 

WP 2’s pre-processor tool based on the initial power flow results of WP 5’s regional cases considering the 

Figure 1-1: FlexPlan project conceptual block diagram 
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WP 4’s reference macro-scenarios which are defined and time series data for a specific year without detailed 

consideration of stochastic inputs. As such, the methodology presented within this task provides the 

necessary link between Pan-EU macro-scenarios and the time series input required by the planning tool, 

including the stochastic representation of renewable generation and demand.  

Objectives of this document 

This document is the final deliverable of Task 1.4: Scenario Generation and Reduction Approach. The 

document: 

- describes the approach to generate operational scenarios for wind, solar and hydro generation as well 

as load time series based on pan-EU scenarios of WP 4, 

- describes the approach to identify a sub-set of representative operational scenarios by clustering 

techniques and thereby reduce complexity and calculation time of the planning problem, 

- discusses the modelling choices that have been taken against the background of long-term pan-EU grid 

expansion studies, 

- discusses state of the art techniques to model uncertainties in long-term grid expansion studies, 

- presents a literature review highlighting alternative methods to the proposed method, 

- and demonstrates the applicability of the method using a small-scale test case. 
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2. Definitions and applied Data 

In this section, individual essential terms and parameters are defined and the specific input and output data of 

the methodology is described. 

2.1. Sets, indices and data model 

Variables Symbol Indices 

Set of planning horizons         

Set of periods in the planning horizon         

Set of nodes         

Set of generators         

Set of flexible demand elements         

   

Set of time steps         

Set of specific time periods            

Set of macro scenarios         

Set of historic observations         

Set of NUTS-2 regions         

Set of countries         

 

Variables Symbol Cardinality Unit Comment 

Specific period of time 
   

 Hours  

Typical duration until a 

unit is back in operation 
      

 
Hours 

 

Change in electricity 

demand in country c in 

hour t due to heating 

     
          

 

MW 

 

Change in electricity 

demand in country c in 

hour t due to heating 

     
          

 

MW 

 

Positive absolute 

difference in ambient 

temperature of a country 

c in hour t in operational 

scenario s and reference 

scenario sRef 

            

    
 

°C 
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Negative absolute 

difference in ambient 

temperature of a country 

c in hour t in operational 

scenario s and reference 

scenario sRef 

            

   
 

 

°C 

 

Capacity factor of a 

technology in a specific 

period of time    

    
     

 

p.u. 

 

Capacity factor of a 

technology in a specific 

NUTS-2-region r in hour t 

in an operational 

scenario s  

       
     

 

p.u. 

 

Hydro capacity factor in 

a specific country c in 

hour t in an operational 

scenario s  

       
       

 

p.u. 

 

Number of day in year 
d 

 -  

Active energy produced 

in a specific period of 

time    

   
    

 

MWh 

 

Linear load-temperature 

sensitivity factor for 

heating in country c  

   
     

 

MWh/°C 

 

Linear load-temperature 

sensitivity factor for 

cooling in country c 

   
     

 

MWh/°C 

 

Failure probability of 

thermal power plant 

       
% 

 

Total active power 

generation in NUTS-2-

region r in hour t for 

macro-scenario m and 

operational scenario s 

        
     

MW 

 

Installed run of river 

hydro generation 

capacity at node n in 

    
             

MW 
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macro-scenario m 

Active hydro power 

generation at node n in 

hour t for macro-

scenario m and 

operational scenario s 

        
        

MW 

 

Installed generation 

capacity at node n in 

macro-scenario m 

    
      

MW 

 

Total installed 

generation capacity in 

NUTS-2-region r in 

macro-scenario m 

    
      

MW 

 

Total active power 

demand at node n in 

hour t for macro-

scenario m and 

operational scenario s 

        
      

MW 

 

Maximum active power 

generation 

      
                      

MW 
 

Total active power 

demand at node n in 

hour t for macro-

scenario m and reference 

operational scenario sRef  

           

          

MW 

 

Active power reference        
   

                    

MW 

For renewable 

generators (PV, Wind, 

Hydro), the active 

power reference equals 

the maximum active 

power generation. 

Reference demand       
   

                   MW  

Average proportion of 

time in which a unit is 

out of order 

      

% 

 

Random number 

between 0 and 1 

x  
% 
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2.2. Geographic scope 

In the FlexPlan project, six regional cases (RC 1 – RC 6) are developed, which will serve for both 

validating the practical application of the advanced planning tool, and also to create results which are 

necessary to analyze the order of magnitude of the expected benefits of flexibility for the system in the 

medium-long term horizon. The six regional cases depicted in Figure 2-1 cover the main macro-European 

zones, having each typical generation and network characteristics: Iberian Peninsula, France and Benelux, 

Germany, Switzerland and Austria, Italy, Balkan region and Northern Europe. 

The fundamental input for the regional cases is provided by TU Dortmund’s MILES simulation framework, 

for smaller sub-regions in each country. A more detailed description of MILES can be found in the appendix of 

FlexPlan’s D4.1 Pan-European scenario data [4].  

The regionalization module of MILES calculates installed capacities at zonal level as well as time series for 

Renewable Energy infeed for 34 countries in Europe, starting from National level installed capacities defined 

in the Pan-EU scenarios. To distribute installed capacities of RES, MILES applies a top down approach. The 

National territory of each country is divided into a number of sub-regions. Subsequently, various statistical 

parameters for each region are analyzed carefully to generate specific regionalization factors. The considered 

statistical parameters include socio-structural data, land use, location of existing plants and climate 

characteristics. In a second step, MILES calculates feed-in time series for each region based on historical 

weather data and the assigned installed capacities. The weather data processed in MILES is taken from the 

regional model COSMO-EU of Germany's National Meteorological Service [6]. A historical load profile is broken 

down by means of regionalization factors and scaled to the targeted annual consumption, to generate spatially 

Figure 2-1: FlexPlan’s six regional cases 
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disaggregated time-series of the electrical load in each sub-region. For the electrical load, a distinction must be 

made between the load of households, the service and industry sectors. Based on available data, either the 

number of households or the population of every region is used as main parameters to distribute residential 

demand. The regional distribution of the electrical load of the service sector is described by several 

parameters without considering any weighting parameters. The gross domestic product and population 

density are major indicators for the electrical energy demand. Other main parameters are the area of 

commercial buildings and related open space, as well as the working population of each sub-region. Table 2-1 

provides the considered number of sub-regions for each country considered in the FlexPlan regional cases. 

Table 2-1: Number of considered sub-regions per country per regional case 

Regional Case Country sub-regions [#] 

1 
Spain 599 

Portugal 404 

2 

France 766 

Netherlands 37 

Luxembourg 11 

Belgium 46 

3 

Denmark 162 

Norway 168 

Sweden 175 

Finland 70 

4 Italy 728 

5 

Serbia 79 

Macedonia 103 

Albania 165 

Montenegro 67 

Bosnia Herzegovina 240 

Croatia 233 

Slovenia 174 

6 

Germany 732 

Austria 70 

Switzerland 126 

 

To ensure maximum consistency between the macro-assumptions taken in the pan-EU scenarios of 

MILES and the detailed nodal operational states that will be considered in the regional cases, detailed 

information on the sub-regional level is used as inputs for the scenario generation and reduction described in 

the present report. The detailed output of MILES provides the installed generation capacity for each node of 

the transmission grid provided by ENTSO-E as an individual sub-region the pan-EU results. A full time-

series of 8,760 hours is provided for each macro-scenario. This feature of MILES helps us to avoid extensive 

zonal to nodal data transformations in the following tasks and work packages. The spatial distribution of the 

considered transmission grid nodes in Europe is visualized in Figure 2-2. 
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However, the high level of detail in this tasks’ input data (approximately 5,100 locations in regional 

cases and further locations in Eastern Europe) requires an adequate scenario generation and reduction 

approach considering generation and demand stochasticity on a similar spatial and temporal resolution.  

The Nomenclature of Territorial Units for Statistics (NUTS) forming, the so called “NUTS-Regions” has 

been identified as a suitable geographic reference system to model spatial and temporal uncertainties in 

this task, as there is sufficient data publicly available that can be integrated in the developed scenario 

generation and reduction methods. The geocode standard for the NUTS regions, is developed and regulated by 

the European Union, therefore it only covers the member states of the EU in detail. 

For each EU member country there are in total four NUTS levels that are established by Eurostat in 

agreement with each member state. The current NUTS classification (2018) covers 28 regions at NUTS-0 level 

(EU Member States), 104 regions at NUTS-1 level, 281 regions at NUTS-2 and 1,348 regions at NUTS-3 level. In 

most cases, the classification is identical with the administrative structure of the Member States. However, not 

all NUTS-regions correspond to administrative divisions. The four hierarchical levels are: 

 The population of all European NUTS-1 regions is between 3 and 7 million inhabitants. However, 

there are exceptions to this rule, particularly in smaller EU states (e.g. Luxemburg, Cyprus, 

Estonia), where the NUTS-0 region (Member State) often also represents the NUTS-1 and 

Figure 2-2: Transmission grid nodes in Europe considered as sub-region in MILES 



 

 

Copyright 2020 FlexPlan    Page 10 

 

FlexPlan 

sometimes even NUTS-2 level. In Germany for example the NUTS-1 regions correspond to the 

federal States (Bundesländer). 

 NUTS-2 regions usually have between 800,000 and 3 million inhabitants. In the United Kingdom 

for instance, this level represents mainly the level of the counties.  

 NUTS-3 regions generally have a population of 150,000 to 800,000 inhabitants. In France, this is 

the level of the departments, whereas in Belgium it is the level corresponding to the 

Arrondissements. 

The NUTS-2-Level offers a good compromise in terms of spatial accuracy, data availability and data 

handling complexity. The regions of the NUTS-2-Level (2013) are visualized in Figure 2-3. 

  

Figure 2-3: NUTS-Regions (Level 2) in Europe (2013) used as geographic reference system to model uncertainties 
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3. State of the Art in Scenario Generation and Reduction 

The aim of transmission and distribution network expansion planning is to find a set of reinforcement and 

expansion measures forming a robust grid configuration that serves the load reliably at minimum cost for a 

large variety of grid use cases.  

Since the power system’s degree of penetration with non-dispatchable renewable energy sources 

increases more and more, the total bandwidth of possible grid use cases has grown significantly. As a 

consequence, traditional planning approaches considering only a few selected hours as inputs, e.g. the 

hours with highest and lowest load, are no longer suitable to assess future energy system’s adequacy and 

reliability. Thus, advanced methods have to be applied in power system planning to incorporate the extended 

bandwidth of possible grid use cases in the future. 

As the share of non-dispatchable RES in the system rises, power system operation, control and planning 

have to cope with increasing amounts of uncertainties. Uncertainties in the field of power systems that are 

considered in FlexPlan and its scenario generation approach respectively: 

o unplanned outages of thermal units,  

o intermitting generation of renewable energy sources,  

o weather / temperature sensitive electrical load and  

o amount of available hydropower generation; 

These uncertainties, referred to as stochastic inputs of the planning problem, are significantly impacting 

power system operation as well as power system reliability already today and will continue to do so in the 

future. Thus, advanced transmission and distribution grid expansion planning methods have to incorporate 

these stochastic inputs in an adequate way to be able to deliver a robust solution. A solution is considered as 

robust, if it the determined grid infrastructure is able to supply the demand in all conceivable credible 

situations. To model such kind of extraordinary conditions, adequate stochastic inputs have to be chosen 

incorporating credible conditions, such as droughts, cold spells, windstorms, high-pressure weather 

conditions and random combinations of the aforementioned conditions resulting in critical events by so called 

scenarios. 

Optimization methods and/or heuristics are often used to determine the subset of cost-optimal grid 

reinforcement and expansion measures and their optimal positions in the existing infrastructure. The existing 

methods differ mainly in the applied solution algorithms as well as in the considered time period. In the field 

of mathematical programming optimization, decomposition approaches according to Benders (cf. [7] [8] [9] 

[10]) are often applied, whereas evolutionary algorithms [11] [12] are widely used in the field of heuristic 

solution algorithms. The grid expansion problem often only considers one specific target year (static 

planning) [11] [12]. Increasingly, however, the time-coupled consideration of several consecutive planning 

periods is getting in the focus of attention, whereby so-called dynamic approaches (cf. [10]) are gaining in 

popularity. However, the complexity of the problem increases significantly, especially when several 

periods (dynamic planning) are considered [13]. In existing approaches to solve the grid expansion 

problem, uncertainties in the input variables are often represented only insufficiently or in a very simplified 

form in order to keep the problem complexity at an acceptable level.  
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A scenario typically includes forecasts of the installed capacity per generation technology and the load in 

the target year based on a so-called storyline, which qualitatively describes the political and legal framework. 

In order to depict the totality of all possible future scenarios, typically three to four extreme or marginal 

scenarios are defined, which form the largest possible scenario funnel and thus cover the broadest possible 

spectrum of uncertainties. Based on the identified extreme/border scenarios, detailed investigations are 

typically carried out on an hourly basis for one year (8,760 hours), considering historical climatic and 

hydrological conditions with regard to the necessary grid expansion requirements. Recently, a large number 

of historical weather years for modelling the supply-dependent generation from wind and sun have been 

taken into account in electricity market-based analyses of system’s adequacy [14], whereas even today only 

one typical weather year is taken into account in detailed studies of grid expansion requirements [15]. 

In addition to the scenarios published by transmission/distribution system operators for the development 

of the national and international energy supply system, there are a large number of other scenarios [16], 

which have been developed by research institutes and other institutions. It should be noted that the 

forecasts contained therein for the future development of the system sometimes differ significantly from 

the established extreme/border scenarios. As such, we can conclude that the frequently practiced use of 

only three to four extreme or boundary scenarios in network planning is not sufficient to cover the entire 

range of uncertainties in the input data.  

3.1. Consideration of uncertainties in power system planning 

The model-based determination of the future grid load under uncertainty is the subject of numerous 

studies and research projects. A fundamental distinction must be made between the operational and 

planning perspectives. In the context of transmission system operation, uncertainties in the short term have 

to be considered as exactly as possible in order to adequately consider risks of critical grid situations in 

advance. On the other hand, uncertainties in long-term grid planning must be considered in order to reduce 

risks associated with extensive investments in the grid infrastructure. In the field of long-term grid planning 

in particular the risk of sunk cost and stranded investments are present. The main focus of this research 

project is on long term grid planning. As such, the modeling of stochastic input variables is more focused on 

long-term uncertainties (climatic and hydrological conditions) and less on short-term uncertainties, e.g. 

wind and load forecast errors or power line and power plant outages. 

There are several different approaches to model the long-term uncertainties and their interactions with 

each other in the context of grid planning. On the one hand, uncertainties in the input parameters can be 

explicitly represented by their stochastic properties. Therefore, it is necessary to define a probability 

distribution function for all uncertain input parameters. On the other hand, the consideration of all 

combinatorial possibilities of the uncertain input parameters (at least in theory) represents a further 

option. Thereby, all theoretically possible combinations of uncertain parameters’ realizations are examined. 

This procedure is equivalent to a brute force method or an exhaustive search approach. Furthermore, it is 

possible to represent the uncertainties in the overall problem only by a limited number of deterministic 

extreme scenarios, assuming these extreme conditions include all possible realizations. Setting up a 

(multivariate) distribution function is often very complex and not applicable to all problems. However, 

multivariate distribution functions are able to model all dependencies between the uncertainties in a compact 

way. In contrast, a limited number of extreme scenarios is easily set-up, but they are obviously not able to 
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model the full range of the uncertainties. Furthermore, the consideration of all combinatorial possibilities is 

often not possible due to the large number of uncertainties and their individual characteristics, such that a 

problem reduction is carried out by selecting presumably extreme scenarios. 

For the consideration of uncertain input variables, such as intermittent renewable energy sources, 

variable hydro generation or temperature-dependent loads, stochastic modelling techniques were 

developed. In contrast to deterministic methods, all (or a selected sub-set) of input and output variables 

are treated as random variables. By assuming that uncertainties or variations in the input variables can be 

estimated or measured, the probability density functions of the input variables are known [17]. In case 

uncertainties in the respective input variables cannot be estimated or measured, assumptions have to be 

made. The aim of the probabilistic methods is to determine probability density functions of the output 

variables to measure their respective variability. Meanwhile, many different probabilistic procedures exist, 

which can be divided in two main groups: Monte-Carlo simulations and analytical procedures. 

If the uncertainties were described in terms of scenarios, only the Monte-Carlo simulation can be 

applied or a transformation of the scenarios into a multivariate distribution function is necessary. Most 

of the existing probabilistic approaches require known, continuous probability density functions comparable 

to a normal distribution as input variables. If the input variables are only partially known or discretely 

distributed, most of the probabilistic methods become inaccurate. Thus, they are no longer applicable.  

The Monte-Carlo simulation is often used in the analysis of energy systems. It is regarded as the simplest 

solution method for probabilistic problem formulations and is able to deliver precise results [17]. At the 

beginning of each iteration, random values are sampled from the input variables, subsequently a deterministic 

problem is generated and solved. With the Monte-Carlo simulation, there are no limitations regarding the 

description of input variables. On the one hand it is possible to use probability density functions and on the 

other hand time series data can be used with Monte-Carlo approaches as well. Thus, Monte-Carlo approaches 

are very flexible with regard to the inputs and therefore can be perfectly adapted to specific problem types. 

However, a large number of iterations is required to achieve convergence [18]. Consequently, the 

computational effort is very large [17] and increases with growing number of input and output variables [19]. 

In contrast to the Monte-Carlo simulation, analytical methods are computationally more effective. They 

determine the relations between the input and output variables by simplifying the probabilistic problem by 

mathematical assumptions. Analytical methods include convolution, Fast Fourier Transformation and fuzzy 

logic [18]. The convolution method is a common widely used method. With this approach all possible 

combinations are considered, but it has two major disadvantages. On the one hand, a linearization of 

nonlinear relations is necessary. The second disadvantage is the assumption of complete statistical 

independence of the input data. It is therefore difficult to apply to real life uncertainties. 

Furthermore, the incorporation of uncertainties in probabilistic models can be differentiated in analytical 

approaches that completely rely on probability density functions as inputs whereas some Monte-Carlo 

approaches work with huge amounts of time series data coming from a significantly large data pool of 

(historical) observations or measurements. Especially, modeling uncertainties in power generation of 

intermittent renewable energy sources as well as in the electrical load can be used to illustrate these two 

fundamentally different approaches.  
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To model the power generation of wind turbines, historic weather conditions are used in some cases, i.e. a 

time series of historic wind speed near the plants' locations. The recording of one historic year consisting of 

8,760 hours is used subsequently to determine the dispatch as well as the grid utilization [20]. On the one 

hand, this procedure requires a high computational effort compared to an analytical approach using an 

adequate distribution function to generate the same number of samples. This is especially the case, if 

probability distributions are treated analytically rather than numerically in the subsequent analysis. On the 

other hand, it is known that the consideration of only one historic year (resulting in 8,760 samples) is not 

representative for future years, as climatic conditions (especially wind speed) can vary considerably 

from one year to another. However, the consideration of the full time series is advantageous, as the 

intertemporal structure is not lost, against the background of the resulting gradients in wind power 

generation from one hour to another. In [18] and [21] the wind speed is represented by a Weibull distribution. 

The dependencies are modeled by the Pearson coefficient and a small number of wind turbines is considered. 

Some research works use copulas, which allows a flexible modeling of dependencies. The concepts of Copulas 

was introduced in 1959 by Abe Sklar and is mainly used in the fields of actuarial and financial mathematics. 

However, more recent works [22] apply the concept of copulas as well in the field of energy system modelling. 

A copula is a function that models the dependency structure between different random variables. Here, the 

marginal distributions and the dependency structure are modeled independently. The Copula is a flexible tool 

to consider both linear and nonlinear dependencies [23]. In the previous work, only small Copula models are 

built, which consider a small number of dimensions. Usually only two or three variables are connected by a 

copula [24] [25] [26] [27]. A much higher number of dimensions is necessary by considering realistic large-

scale infrastructures as the European transmission grid. Each uncertain variable at a specific location or node 

goes along with an additional dimension, resulting in a complex high-dimensional copulas. In [28], 

uncertainties of power plant and line failure as well as in the load forecast are illustrated by scenarios. 

Uncertainties in the load are often represented by Gaussian distributions, e.g. in [29] [30] [31]. In [30] the load 

is additionally modelled with a gamma distribution. Furthermore, many different uncertainties are 

represented by “extreme scenarios”, e.g. in [32]. However, the generation of these multiple scenarios (in 

terms of different generation and load time series) does not follow a closed methodology. Thus, there is a 

need for further research on how to incorporate uncertainties in time-series based large-scale 

transmission expansion planning by a closed scenario generation and reduction method.  

In summary, it can be concluded that analytical methods work comparably quickly, but have only limited 

flexibility with regard to problem formulation. The use of analytical methods and the associated 

determination of probability density functions is often accompanied by unavoidable simplifying assumptions. 

In contrast, the iterative solution algorithm by means of Monte-Carlo simulation takes comparatively long 

time. However, iterative problem solving offers a higher degree of flexibility with respect to the problem 

formulation itself, whereby individual input variables can be treated separately with respect to their 

individual uncertainties. In addition, the complexity of implementing an analytical approach increases 

disproportionately with increasing size of the considered system compared to a Monte-Carlo simulation, 

because all uncertain input data - with their respective stochastic properties - have to be modelled explicitly, 

including their correlations. Furthermore, the consideration of intertemporal properties, such as hydro 

reservoirs’ levels of storage, in analytical procedures is only possible with additional considerable effort 

(sequential approaches, e.g. [33]). By deterministic consideration of the problem per iteration in a Monte-

Carlo simulation, it is comparatively easy to model intertemporal properties that couple several time steps. 
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For the reasons mentioned above, the modeling of the stochastic input variables by the consideration of a 

broad variety of historical weather conditions a Monte-Carlo approach is therefore chosen within the 

framework of this project. 

3.2. Scenario generation techniques (time series based) 

As the FlexPlan projects aims at explicitly incorporating storage and demand flexibility in the planning 

process, the consideration of consecutive time steps, i.e. time series data, is essential. Hence, hourly time 

series are generated for the afore-mentioned stochastic input parameters. Spatial and temporal 

correlations need to be incorporated correctly when generating time series for intermittent renewable energy 

sources and the electrical load as well. Thus, each time series’ individual seasonality and trend has to be 

identified as well as correlation between the time series.  

Basically, there are two approaches to tackle the problem of spatial and temporal correlations in the 

scenario or especially the time series generation process. One the one hand statistical methods can be used 

to analyze historical data to identify the intrinsic characteristics of each time series namely wind, solar and 

hydro power generation and load. Numerical weather models can be applied to model the feed-in of 

intermitting renewable energy sources bottom-up on the other hand. 

3.2.1. Statistical methods 
Statistical methods make use of historical measurements to train a statistical model (e.g. neural network 

or comparable machine learning algorithms) to transform the data. However, the application of statistical 

methods in the field of power system planning has several problems, as it is heavily depends on high quality 

training data to learn the intrinsic characteristics of the respective generation and load time series as well as 

their correlations. On a national level, historic data of total variable Renewable Energy Sources (vRES) feed-in 

and total load might be publicly available for several years, but spatially disaggregated feed-in and load time 

series (e.g. per sub-station) are typically not publicly available, especially not for several years. As a 

consequence, statistical methods could be used to identify and learn the intrinsic characteristics on an 

aggregated level, but due to the lack of adequate training data (spatially disaggregated wind, solar and hydro 

power generation) it is not possible to identify spatial correlations. Especially, by analyzing the future energy 

system it is not possible to have detailed past production data of vRES, as they will be built in the future. Thus, 

the application of statistical methods is not applicable for prospective system studies. Furthermore, individual 

production data of vRES generators, e.g. wind farms, is typically not publicly available, as it is treated as 

confidential in most cases. Hence, alternative methods and techniques have to be applied to generate 

consistent scenarios in terms of detailed spatial and temporal vRES feed-in and load time series of future the 

future energy system. As a consequence, the transformation of numerical weather data into electrical 

power outputs has become an independent field of research: energy meteorology; delivering suitable 

techniques to generate temporal and spatial correlated vRES time series. Thus, the FlexPlan scenario 

generation approach makes use of numerical weather model’s data as well as physical models to create 

consistent scenarios. 

For the sake of completeness, a detailed review of statistical methods for scenario and time series 

generation can be found in [67] [68]. 
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3.2.2. Energy meteorology and physical models 
Due to the predominantly fossil-based energy system, which uses storable and transportable energy 

sources (coal, lignite, oil, gas and nuclear), meteorological topics were for a long time only of minor 

importance in energy system analysis. This situation already changed fundamentally at the turn of the 

millennium with the beginning of the increasing use of renewable energy sources. This led to the foundation 

of the still young field of energy meteorology. In particular, the renewable primary energy sources wind and 

solar PV are planned as fundamental components of energy generation in the future energy system. However, 

these cannot be stored and are volatile in their supply. Due to this increasing weather-dependent energy 

production, comprehensive information about the spatial and temporal availability of these energy sources is 

needed to simulate the energy system [34]. 

In addition, a detailed understanding of the influence of meteorological parameters is necessary in the 

planning of the future energy system. Power generation of intermittent renewable energy sources is mainly 

determined by their location and the corresponding local climatic conditions. To capture and describe these 

interactions between meteorological and energy processes, existing meteorological models are used. These 

numerical simulation models map the physical effects of the atmosphere based on the basic equations for 

momentum, mass and energy conservation as well as further balance equations for cloud water, rain water 

and precipitation particles. One result is a three-dimensional wind field, which considers the influence of 

orography in layers close to the ground. For example, the influence of forests or settlements is mapped as well 

as the increase of wind speed over crests and mountain ridges. Thus, by the application of numerical weather 

models inaccurate extrapolations of data from near-ground measuring stations to determine the wind speed 

at different heights, e.g. hub height of a wind power plant, can be avoided, as this process typically goes along 

with increasing uncertainty depending on the height [35] [36] [37]. 

There is a multitude of weather models in the literature. The calculation results of some of these models 

are publicly available. An overview of selected models can be found in the following Table 3-1. 

Table 3-1: Overview of publicly available weather models (reanalysis datasets) 

Institution Model Coverage 
Time 

resolution 
Spatial resolution Model heights [m] 

DWD COSMO-DE 2005 present 1 h 2.8 km x 2.8 km 10, 36, 73, 122, 184 

DWD COSMO-EU 2006 2016 1 h 7 km x 7 km 10, 35, 69, 116, 179 

DWD ICON 2017 present 1 h 7 km x 7 km 10, 43, 99, 174 

ECMWF ERA40 1957 2002 6 h 80 km x 80 km 10, 60 

ECMWF ERA-Interim 1979 present 6 h 80 km x 80 km 10, 60 

ECMWF ERA-20C 1900 2010 3 h 80 km x 80 km 10, 91, 100 

ECMWF ERA5 1979 present 1 h 30 km x 30 km 10, 100, 137 

JMA JRA-25 1979 2004 6 h 60 km x 60 km 10, 40 

JMA JRA-55 1958 present 6 h 60 km x 60 km 10, 60 

NASA MERRA-2 1980 present 1 h 55 km x 70 km 2, 10, 50, 72 

NCEP R2 1979 2012 6 h 278 km x 278 km 10, 28 

NCEP CFSR 1979 2010 1 h 35 km x 35 km 6, 10 

NCEP CFSv2 2011 present 1 h 38 km x 38 km 6, 10 

NOAA 20CRv2 1871 2011 6 h 222 km x 222 km 10, 28 
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The models differ in the available historical time range, the temporal and geographical resolution and the 

model heights. All listed models are constructed according to similar principles, but differ in the scope of the 

systems of equations, the type and number of parameterization or the initial and boundary conditions. For the 

modelling of the feed-in of the wind energy plants, however, the regional resolution and the simulated height 

layers of the models are particularly decisive. The weather models of the organizations National Aeronautics 

and Space Administration (NASA), Global Modeling and Assimilation Office (GMAO), National Oceanic and 

Atmospheric Administration (NOAA), National Centers for Environmental Prediction (NCEP), Japan 

Meteorological Agency (JMA) and European Centre for Medium-Range Weather Forecasts (ECMWF) simulate 

the entire earth's atmosphere and are therefore called global models. Due to the large amount of data and the 

required computing power, only models with a less detailed spatial resolution are available. The models of the 

German Weather Service (DWD) are local models and focus on Germany or Central Europe. The models and 

the simulated data are provided by government institutions and are freely accessible to the public.  

Some of these global models are already being used as a database to simulate the supply of 

renewable energies [38] [39] [40] [41] [42]. An evaluation of the models ERA5, MERRA-2 and COSMO-

REA6 (successor of COSMO-EU) with regard to their applicability in power system simulations can be 

found in [43] where a detailed case study for wind production in France was carried out. Furthermore, a 

detailed comparison of the applicability of the aforementioned weather models to simulated intermittent 

renewable energy feed-in can be found in [44].  

3.2.3. Transforming numerical weather data in electrical power outputs 
Power system studies such as transmission expansion planning need power generation of all generators as 

an input. Thus, the feed-in of non-dispatchable renewable energy sources like wind and solar has to be 

modeled in the scenario generation approach. Therefore, the meteorological information of numerical 

weather models has to be converted in electrical power outputs.  

In contrast to the statistical models, physical models make use of turbine power curve functions to 

transform the wind speed at hub-height to electrical power generation. The application of physical models 

requires at least some fundamental information on the technological parameters. On the one hand, the model 

or type of the wind turbine is used to identify an adequate matching power curve. On the other hand, the hub-

height of the plant has to be known to extrapolate the wind-speed at this level. One major drawback of 

physical models is the potential bias included in the underlying wind-speed data. As a result, physical 

models tend to over or under-estimate the power outputs. Thus, physical models are typically combined 

with bias correction approaches, e.g. [39] by comparing modelled data with historic data to derive 

correction factors [43]. The need for bias correction techniques results from the fact that weather reanalysis 

data is calculated with computer models that are less than perfect and include systematic errors (biases) due 

to errors in the underlying numerical weather model [39]. 

Physical models - Wind power 

Currently, reanalysis data sets for the simulation of feed-in time series of wind turbines are increasingly 

being investigated. First investigations of wind power generation using reanalysis data sets were carried out 

for selected sites in Hungary [45] and Northern Ireland [46]. In recent years, studies with larger areas of 

consideration, typically national studies, have been carried out, e.g. for UK [47] [48] [49] [50], Denmark [51] 
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and Sweden [52], in order to validate the simulated time series by comparison with recorded data. It should 

be noted, however, that the previous studies only concentrated on comparatively small and geographically 

similar areas. Furthermore, these studies only validate the modelled data on the basis of wind speeds and not 

on the basis of generation data, thus neglecting the essential part of the model - the transformation of 

meteorological data into electrical generation data [39]. A comprehensive overview of current studies and the 

validation methods used in them can be found in [50]. In addition, there is an increasing number of 

publications [54] [55] [56] [57] [58] that deal intensively with the transformation of meteorological data into 

electrical generation time series, but do not deal with the validation of the results. Wind energy capacity 

factors throughout Europe are over- or underestimated by up to ±50%, as [39] noted. 

Physical models – Solar power 

As stated in [38] MERRA and MERRA-2 of NASA [59], ERA-Interim of the ECMWF [60] and JRA-55 of the 

Japanese Meteorological Agency [61] are frequently used for global reanalysis of the latest renewable 

generation. There are numerous new publications on the use of reanalysis data for wind energy simulation 

(e.g. [47] [49] [50] [51]). There seem to be two main reasons why reanalysis data is not used often for 

modeling solar generation. Firstly, the installed capacity of photovoltaics (2012) reached a level of 100 GW 

worldwide much later than wind energy (2008) [62]. Secondly, satellite images are an alternative open data 

source to obtain data on solar radiation in high spatial and temporal resolution. In addition, it is also possible 

that the modelling of solar feed-in is regarded as less challenging due to its typical recurring structure in the 

seasonal and diurnal course. 

Nevertheless, there are some recent studies [55] [63] [64] [65] that use reanalysis data to simulate solar 

feed-in. However, these studies do not validate the weather data itself, as they accept it as it is. In [66], PV time 

series generated by MERRA are validated on the basis of two historical years of national aggregated PV 

production in Germany. In view of the fact that the suitability of reanalysis data for the simulation of PV feed-

in for Europe-wide studies has not yet been conclusively clarified, since no validation against historical data 

with spatially and temporally high-resolution simulations for Europe has been carried out, [38] has made up 

for this. In [38] it was found that solar irradiance data of reanalysis models is basically suitable and adequate 

to be applied in energy system modelling. However, solar irradiance data of reanalysis is subject to 

fundamental biases and should be corrected, just as wind speed data [38]. 

Conclusion 

As there is a multitude of weather models as well as temporal and spatially resolved production data derived 

from them publicly available, the scenario generation approach of this project makes use of data coming 

from MERRA-2 and physical models transforming numerical weather data in electrical outputs. 

3.3. Scenario reduction techniques 

The objective of the network expansion planning tool is to find the optimal network expansion measures 

that will allow the network to operate reliably for a range of uncertain future conditions, spanning several 

decades (2030-2040-2050). These future conditions are characterized by several long-term visions, 

describing possible developments of the energy system as well as divergent European energy policies. 
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As stated above, uncertainties in the planning problem are introduced by the presence of renewable 

generation resources, temperature-dependent loads and hydro-condition dependent storage and production. 

With the robust approach in mind, the expanded network found as solution by the planning problem must be 

able to supply the demand in most, if not all, possible situations. As explained above, the approach chosen 

within FlexPlan is to provide a representative set of inputs, referred to as Monte Carlo years (MC years), to the 

planning tool to make sure that the solution is calculated based on a representative set of possible uncertain 

input scenarios, mainly characterized by the weather conditions.  

However, due to the fact that the FlexPlan tool aims at covering a time horizon of multiple decades, 

including many technologies and spanning a large geographical area, solving this problem is a 

computationally demanding task. Therefore, the chosen set of MC-years must be limited as to allow for a 

computationally tractable planning problem. However, it is difficult to determine which scenarios are relevant 

a priori.  

Before renewable generation became a substantial part of grid operations, it was often considered 

sufficient to evaluate new transmission lines only for the hour of the year with the highest load. Any 

transmission network that allowed for adequate operation during this hour was considered likely to operate 

at least as well during any other demand scenario. This “worst hour” approach to selecting a test scenario is 

still deceptively appealing, but in modern systems, it is not obvious which hour is most likely to cause issues 

that severely threaten the reliability and/or security of supply. Also, the worst hour may vary by region or 

change as new lines are added and reliability issues are resolved. The inclusion of storage (and other flexible 

technologies) into the transmission expansion plan, require representative time series as input scenarios to 

the planning problem to enable a correct modeling of the intertemporal constraints of the flexible assets. 

In the literature on transmission expansion planning, a variety of strategies is described to reduce the 

overall space of possible network operating conditions to a smaller subset of single-hour operating conditions, 

often referred to as ‘time-slices’ [73]. These include the use of heuristics [77], Monte Carlo sampling, Latin 

hypercube sampling, forward and backward scenario selection [74], K-means clustering [72] [78] [75], robust 

optimization formulations, importance sampling [79], and various hybrids of the above methods [69]. 

However interesting, those techniques are focused on finding a limited number of ‘single-hour’ scenarios, and 

disregard the required time dimension of the scenarios for a planning problem including flexibility and/or 

storage. Moreover, it has been shown that for systems with a high penetration of RES, using a limited number 

of single-hour time-slices as input to a generation expansion planning problem leads to an underestimation of 

the variability of RES, hence to an underestimation of the value of flexible technologies [82]. 

Multiple ways to improve the modeling of the temporal dimension have been developed. Mainly in the field 

of generation expansion planning (e.g. LiMES-EU [71]) or energy system optimization models (e.g. TIMES 

[70]), scenario reduction is used to obtain a limited set of representative time series that reflect the variation 

of overall demand and generation over time. In the literature focusing on transmission network expansion 

planning, the topic of scenario generation and reduction is less discussed, as within these works the focus 

mainly lies with the mathematical formulation of the planning problem itself, rather than retrieving suitable 

scenario inputs. Although the transmission network itself is mostly ignored (or simplified) in the energy 

system optimization or generation expansion planning models, the scenario inputs required for these models 

are to a large extent similar to the inputs required for transmission network expansion planning. Moreover, 
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the conditions that define a representative set of input scenarios are largely similar for transmission network 

expansion planning as for the energy system optimization models. 

Within the generation expansion or energy system optimization models, often a set of (well-chosen) 

representative days is used to represent an entire year. In many works, these representative days are 

obtained by using simple heuristics [83][84]. Generally, in most of these simple heuristic approaches, a 

number of periods with different load and/or meteorological conditions is selected in order to capture a 

variety of different events. For example, to select three representative days, one could select the day that 

contains the minimum demand level of the year, the day that contains the maximum demand level and the day 

that contains the largest demand spread in 24 hours, as used in [84]. 

A more advanced technique is to use clustering algorithms to find periods with similar load/generation 

patterns. With clustering-based scenario reduction techniques, the aim is to group the overall space of 

possible scenarios into a (smaller) number of clusters, based on a metric that characterizes the scenario. Then, 

one scenario from each cluster has to be selected to feed into the planning problem. Alternatively, a ‘synthetic’ 

scenario, formed as the ‘average’ of the scenario’s present in the cluster, can be created as cluster 

representative to feed in to the planning problem. Additionally, to indicate the importance or probability of 

the scenario, these can be assigned a weight. This weight equals the size of the cluster (i.e. the number of 

periods that are present in the cluster)1. Clustering approaches may thus implicitly determine the weight 

assigned to every selected representative period, which allows to appropriately account for both common and 

rare events. This is the major advantage compared to the heuristic approaches. Many clustering algorithms 

exist, and are used to cluster input data for network expansion planning problems. For example, in [75] 

Ward’s hierarchical clustering is used, and K-means clustering is used in [85] and [86]. 

A third method to select representative periods for planning problems are so-called probability distance-

based scenario reduction techniques. With this approach, the selection procedure is directly based on 

evaluating the full set of representative periods using a pre-specified ‘cost-function’. This cost function 

represents the ‘distance’ between representative sets. The idea is then to solve an optimization problem to 

find the reduced set of representative scenarios with the minimal distance with respect to the full original set. 

The distance or cost function includes the impact the scenario has on the final solution of the problem. This is 

a hard problem to solve, for which possible solution techniques described in literature make use of the fast 

forward and backward algorithm [87] [88] [89]. The drawback of these methods is that they are 

computationally heavy, since they involve solving an often complex optimization problem. 

In [73] an assessment of different scenario reduction techniques used for generation expansion planning 

problems is made. One could argue that for transmission expansion planning, similar requirements exists on 

the selection of representative input scenarios. In [73], it is shown that on a limited test case the use of 

heuristics to determine a representative set performs worst, whereas the probability distance -based 

technique performs best, but at a high implementation and computation cost. The clustering-based technique 

performs sub-optimal, although much better than the heuristics-based method, and at a much lower 

computational cost. Therefore, in this project is opted to base the scenario reduction method on 

clustering.   

                                                                    
1 The underlying assumption is taken that all scenarios in the original set of scenarios have the same 

probability weight. 
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4. Scenario Generation Approach 

On the pan-European level a number of long-term visions, describing possible developments of the energy 

system and divergent European energy policies exist. Within the FlexPlan project, three visions for each target 

year based on diverse storylines, resulting in a total number of nine pan-EU scenarios (see D4.1 [4]) have been 

defined. Considering these visions as projections of the energy systems’ development a scenario funnel is 

spanned, as depicted in Figure 4-1. 

The Pan-EU scenarios developed within FlexPlan include macro-assumptions with regard to 

 generation mix and demand per country,  

 installed generation capacities and their technical properties, e.g. efficiencies, 

 technical lifetime of power plants and expansion projects, 

 fuel prices and availability of (synthetic) fuels, 

 land usage and area potentials for renewable energy sources, 

 new consumers and technologies impacting the total electricity demand. 

It has to be noted that some macro uncertainties, especially in the field of installed capacities and 

technological progress, are already covered by the different visions in WP 4’s Pan-EU scenarios. These macro 

uncertainties are referred to as first stage uncertainties that are out of the scope of the tasks of scenario 

generation and reduction approach, which is dedicated to generate operational scenarios including second 

stage uncertainties in terms of climatic and hydrological conditions. 

To obtain operational scenarios, the Pan-EU scenarios on country level provided by MILES of 

TU Dortmund, are broken down to smaller geographic regions. Thus, national installed capacities per 

Figure 4-1: Scenario funnel formed by WP 4’s Pan-EU long-term macro-scenarios 



 

 

Copyright 2020 FlexPlan    Page 22 

 

FlexPlan 

generation and load category are spatially disaggregated to significantly smaller sub-regions in each country 

(see D4.1 [4]). To this aim, within FlexPlan each node of the transmission grid model provided by ENTSO-E 

[95] is used as a sub-region within MILES. As a consequence, the disaggregated scenario data per sub-region 

coming from WP 4 of FlexPlan can directly be used as an input for the scenario generation and reduction 

methods that are dedicated to the nodal level. Furthermore, the need for zonal to nodal data 

transformation processes is no longer necessary and beneficial for a straightforward integration of the 

scenario generation and reduction approach in FlexPlan’s complete toolchain, considering WP 2’s pre-

processor tool and WP 5’s non-expanded optimal power flow simulations. The spatial disaggregation of the 

electrical load as well as renewable energy sources is only carried out once with MILES. Thus, the 

regionalization of WP 4’s macro-assumptions itself is not considered as an uncertainty either. 

The developed scenario generation approach within FlexPlan is depicted in Figure 4-2 and focuses on the 

generation of operational scenarios in terms of hourly time series data for renewable energy sources, 

hydro generation and load that are typically influenced by second stage uncertainties in terms of climatic 

and hydrological conditions. As FlexPan’s planning tool explicitly incorporates storage and demand 

flexibilities, the intrinsic characteristics of the generation and load time series over time have to be 

considered. Thus, a Monte-Carlo approach is applied to generate consecutive, correlated time series data 

based on historical climatic conditions. To generate time series of variable renewable energy sources, weather 

data for 40 historical years is used in combination with physical power plant models in two Time Series 

Generation (TSG) modules. Hydrological information of 36 historical years is processed to generate 

hydropower generation time series based on statistical models applied by [101]. 

Figure 4-2: Flow chart of the developed methodology to generate operational scenarios 
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The generated sets of consecutive hourly time series data will finally be used as an input in the planning 

problem to determine the optimal grid expansion including storages and flexibility. As the amount of 

generated time series data (on nodal level) for uncertain input parameters becomes large, especially due to 

the consideration of various climatic conditions as well as the dynamic planning approach coupling the target 

years, a scenario reduction approach has to be applied to reduce the complexity. The scenario reduction 

methods are outlined in section 5. In the following sections, the developed scenario generation methodology is 

described.  

4.1. Monte-Carlo Approach 

The consideration of all stochastic inputs and their correlations respectively by an analytical approach is 

not compatible with a time series-based approach, i.e. the one adopted for the FlexPlan model. As such, a 

Monte Carlo method is applied to tackle the probabilistic interpretation (cf. section 3.1) of the underlying 

grid expansion planning problem including storage and flexibility.  

A variety of samples, so called “MC years” can be used as an input for the underlying deterministic 

planning problem. Against the background of the deterministic grid expansion planning problem on an hourly 

basis for 8,760 consecutive time steps, the climatic and hydrological conditions as well as power plant 

availabilities for a full year are considered as stochastic inputs. 

In this task, three databases have been set up for the sampling process. As mentioned before, these 

databases contain discrete time series data for the uncertain inputs namely vRES, hydro generation and load. 

There are no probability density functions used to replicate time series data or to generate samples. 

The first database incorporates climatic conditions (in terms of hourly capacity factors) for 40 years 

(1980 – 2019) that are relevant to model vRES generation. The database also contains the ambient 

temperature which is used as a parameter to model variations of electrical load. A second database 

incorporates hydrological conditions (in terms of hourly capacity factors and normalized reservoir profiles) 

for 36 years (1982 – 2017) that are relevant to model the power output of run-of-river, reservoir and open-

loop pumped storage plants. The last database contains parameters to model the sensitivity of the electrical 

load as a function of the ambient temperature (with respect to a reference situation) for 1980 – 2019, as the 

first database covers exactly these 40 years. Additionally, the demand database includes normalized load 

profiles (in terms of hourly load factors) for 35 years (1982 – 2016). Based on the presented databases and 

the pool of time series data inside them, MC years can be sampled. Additionally, a fourth database containing 

power plant outages of WP 4 can be considered optionally. 

Figure 4-3: Monte Carlo scenario generation based on historical weather conditions and randomized availabilities 
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As the hydrological parameters published by ENTSO-E are generated by a statistical model taking into 

account different weather parameters of specific historical years, they are correlated with the climatic 

conditions in the respective historic year. Thus, climatic and hydrological conditions cannot be randomly 

combined to operational scenarios. Furthermore, uncertainties in the demand are correlated with wind, 

solar and hydro generation, due to their dependency on the temperature. Thus, only combinations of 

historical weather conditions (one set of correlated wind, solar and hydro as well as demand time series) 

and outages can be considered to generate various operational scenarios in terms of MC years. This 

process of randomly drawing one possible realization (historic year) from the pool of all realizations (total 

amount of historic observations) and subsequently combining the drawn realizations for vRES, hydro and 

load with a set of statistically independent power plant availabilities is called sampling. Thus, a MC year is 

one sample formed by a set of nodal time series describing one possible realization of the stochastic 

inputs on an hourly basis. 

The data sources as well as the specific methods applied to generate time series data while keeping spatial 

and temporal correlations is described in the following sections. 
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4.2. Modelling uncertainties in stochastic inputs 

In this section, the considered stochastic inputs and the modelling of their respective uncertainties are 

presented. In a first step, the influencing factors of uncertainties are briefly outlined for each parameter 

considered within FlexPlan. Subsequently, the developed method to tackle the identified uncertainty as well 

as the approach for time series generation is presented. Finally, the methods used to incorporate spatial and 

temporal correlations are discussed. 

4.2.1. Variable renewable energy sources 
Renewable generation from vRES wind and solar power plants are treated as stochastic input parameters, 

as both generation technologies are heavily dependent on climatic conditions. With regard to wind power, the 

wind speed at hub-height at the plants location is the most influencing factor. For power generation of 

photovoltaic power plants, the solar irradiance at the plant's location as well as the orientation of a plant, i.e. 

of its solar PV panels, impacts its production significantly. Taking this into account, a database containing 

relevant climatic conditions to model vRES power output has been set up. 

The climatic database contains bias-corrected hourly capacity factors for wind and solar per NUTS-2-

Region for most of the European countries for (1980 - 2019) 40 historic years. In Figure 4-4 an overview of 

the modeled countries and their respective level of detail is provided. 

Figure 4-4: Overview of the climatic database for wind and solar capacity factors 

NUTS-2-Level Country NUTS-2-Level Country

AUSTRIA AT 9 1980 - 2019 - 1980 - 2019 -

BELGIUM BE 11 1980 - 2019 - 1980 - 2019 -

BOSNIA-HERZEGOVINA BA - - 1980 - 2019 -

BULGARIA BG 6 1980 - 2019 - 1980 - 2019 -

CROATIA HR 2 1980 - 2019 - 1980 - 2019 -

CZECH REPUBLIC CZ 8 1980 - 2019 - 1980 - 2019 -

DENMARK EAST DK 5 1980 - 2019 - 1980 - 2019 -

DENMARK WEST DK 5 1980 - 2019 - 1980 - 2019 -

ESTONIA EE 1 1980 - 2019 - 1980 - 2019 -

FINLAND FI 5 1980 - 2019 - 1980 - 2019 -

FRANCE FR 27 (22) 1980 - 2019 - 1980 - 2019 -

GERMANY DE 38 1980 - 2019 - 1980 - 2019 -

GREECE EL 13 1980 - 2019 - 1980 - 2019 -

HUNGARY HU 7 1980 - 2019 - 1980 - 2019 -

IRELAND IE 2 1980 - 2019 - 1980 - 2019 -

ITALY IT 21 1980 - 2019 - 1980 - 2019 -

LATVIA LV 1 1980 - 2019 - - 1980 - 2019

LITHUANIA LT 1 1980 - 2019 - - 1980 - 2019

LUXEMBOURG LU 1 1980 - 2019 - - 1980 - 2019

MACEDONIA MK 1 1980 - 2019 - - 1980 - 2019

MONTENEGRO ME 1 - 1980 - 2019 - -

NETHERLANDS NL 12 1980 - 2019 - 1980 - 2019 -

NORWAY NO 7 1980 - 2019 - 1980 - 2019 -

POLAND PL 16 1980 - 2019 - 1980 - 2019 -

PORTUGAL PT 7 (5) 1980 - 2019 - 1980 - 2019 -

ROMANIA RO 8 1980 - 2019 - 1980 - 2019 -

SERBIA RS - - 1980 - 2019 - -

SLOVAKIA SK 4 1980 - 2019 - 1980 - 2019 -

SLOVENIA SI 2 1980 - 2019 - 1980 - 2019 -

SPAIN ES 19 (18) 1980 - 2019 - 1980 - 2019 -

SWEDEN SE 8 1980 - 2019 - 1980 - 2019 -

SWITZERLAND CH 7 1980 - 2019 - 1980 - 2019 -

UNITED KINGDOM UK 40 1980 - 2019 - 1980 - 2019 -

Solar CF Wind CFCountry

Code

Number of

NUTS-2-Regions
Country
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The capacity factor is the ratio of realized generation to installed capacity in a specific period of time:  

    
      

   
   

        
 

Thus, hourly capacity factors represent normalized generation profiles (in the interval [0, 1] per unit).  

In Figure 4-5 the temporal and spatial diversity in wind generation over the past 40 years is depicted for 

two selected NUTS-2-regions in Germany. For the sake of visibility, the weekly moving average of the hourly 

time series data is plotted. Additionally, the 40 time series per region are plotted as fan charts to visualize the 

level of variability in historic data by providing the all-time median and percentiles respectively. The NUTS-2-

region DEF0 is located in the north of Germany near the coast and DE21 is located in Bavaria in southern 

Germany (see Figure 2-3). As can be seen wind capacity factors are on average higher in the north and have a 

higher dispersion.  

 

The key advantage of using capacity factors is that they can easily be used to calculate power generation 

time series considering different installed generation capacities, e.g. the ones coming from the pan -European 

scenarios.  

The capacity factors used within FlexPlan have been calculated by the application of physical models for 

wind [47] and for PV [38] transforming numerical weather data in electrical outputs by applying the method 

of Staffel et al. [100] and Pfenninger et al. [38]. The data is publicly available at www.renewables.ninja [96]. In 

the following sections the models and processes applied by Staffel and Pfenninger to transform historical 

weather data of the MERRA-2 model in electrical power outputs of wind and solar power plants are 

presented. 

Figure 4-5: Exemplary visualization of wind capacity factors for two NUTS-2-regions in Germany  
(raw data taken from [96]) 

http://www.renewables.ninja/
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Generating time series data for wind power generation 

To generate wind energy time series the Virtual Wind Farm (VWF) Model [47] was applied by Staffel and 

Pfenninger. The basic functional principle of the applied physical model is shown in Figure 4-6. 

The VWF model uses reanalysis data from the MERRA and MERRA-2 weather models. The freely available 

data of the models has a very good spatial and temporal resolution and is also available for a large time 

period. As shown in Figure 4-6, the VWF model first obtains historical wind speed data at different heights (2, 

10 and 50 meters) above the ground for each grid point of the weather model (a). In a second step (b) the 

wind speeds of the grid points are interpolated to wind turbine sites using a local regression. Subsequently, 

the wind speed is extrapolated to hub height of the wind turbines for each site using the logarithmic profile 

law (c). Finally, the site-specific wind speeds are converted into power output using manufacturers’ power 

curves (d). Smoothed power curves from manufacturers are used to account for the geographical mixing of a 

large number of different turbine types [100]. 

A complete mathematical description of the VWF model as well as the bias correction can be found in the 

supplementary material of [100]. 

Considering the simulated production of the wind farms    
         and the implied installed wind capacity 

          , Staffel and Pfenninger derived hourly capacity factors     
     assuming that    is one hour: 

    
      

   
        

             
          

Finally, they assigned individual wind farms’ data to NUTS-2-regions and calculated average wind capacity 

factors per NUTS-2-region for a wide range of historical weather conditions. 

  

Figure 4-6: Overview of the VWF methodology (taken from [100]) 
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Figure 4-7: Monthly average capacity factors for Germany, comparing the calibrated VWF simulation (green) with 
ENTSO-E data (black) for 10 historic years (taken from supplementary material of [100]) 

Staffel and Pfenninger compared their results with monthly average capacity factors of ENTSO-E to 

validate their results on country level. In Figure 4-7 one exemplary result (Germany 2005-2015) of their 

comparison using a calibrated VWF simulation model is depicted.  

As shown by Staffel and Pfenninger [100], the VWF simulation model is able to reproduce the intrinsic 

characteristics of wind power generation in Germany (and other European countries as well) on a monthly 

basis in the analyzed period of time. The correlation between the simulated and recorded values from ENTSO-

E amounts to 98%. The authors of [100] have carried out extensive work to validate their results on an 

annual, monthly and hourly basis for most of the European countries. Furthermore, they have undertaken the 

seasonal and diurnal trends a detailed analysis om a country by country base which can be found in the 

supplementary material of [100]. In conclusion, it can be stated that performance of the VWF model is very 

well across Northwest Europe, with correlations to hourly capacity factors of above 0.90. However, Staffel and 

Pfenninger remark that the model’s performance is noticeably worse in the Mediterranean, but still applicable 

for EU-wide analysis. 

Thus, the hourly capacity factors derived by Staffel and Pfenninger (publicly available at 

www.renewables.ninja [96]) for 40 historical weather years on NUTS-2-Level are considered as adequate to 

model wind power generation in this project. 

As can be seen in Figure 4-8, the installed wind capacities per node providing input to the scenario 

generation methodology are assigned to exactly one NUTS-2-region. The elementwise multiplication of the 

corresponding time series of hourly capacity factors for this NUTS-2-region with the nodal wind capacity of 

each node inside this NUTS-2-region provides the wind feed-in time series. 

Figure 4-8: High level flow chart of the methodology for wind time series generation 

http://www.renewables.ninja/
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Generating time series data for solar power generation 

To transform solar irradiance data in PV power generation, the physical model Global Solar Energy 

Estimator (GSEE) [38] was applied by Pfenninger and Staffel. The basic working principle and data processing 

steps are presented in Figure 4-9. 

At first Pfenninger and Staffel carried out a spatial aggregation, as individual plant locations have to be 

assigned to a grid cell of the underlying MERRA-2 weather model. Based on the assigned weather data at the 

plant’s location they approximated the diffuse irradiance fraction with the Boland-Ridley-Lauret (BRL) model 

[97] [98]. By the application of the BRL model, the direct and diffuse irradiances were calculated based on the 

weather data. Subsequently the irradiance on the plane of the PV panel was computed based on the direct and 

estimated diffuse irradiance. Thereby, tracking systems were not considered. Thus, Pfenninger and Staffel 

considered only fixed panels with a fixed azimuth angle as well as a fixed tilt angle. In a final step, the panel 

efficiency was taken into consideration to transform the solar irradiance into power outputs. Therefore, 

Pfenninger and Staffel applied a PV performance model [99], which provides temperature-dependent panel 

efficiency curves. Additionally, the losses inside the PV system, especially in the inverter converting the 

panel’s DC output in AC power, are taken into consideration by a constant efficiency of 0.90 across all sites. A 

complete mathematical description of the GSEE model as well as the bias correction can be found in [38]. 

Considering the simulated PV production    
       and the implied installed PV capacity          Pfenninger 

and Staffel derived hourly capacity factors     
   assuming that    is one hour: 

    
    

   
      

           
          

Finally, they assigned individual grid cells to NUTS-2-regions and calculated average PV capacity factors 

per NUTS-2-region for a wide range of historical weather conditions.  

Figure 4-9: Overview of the approach used to model PV power output (taken from [38]) 
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In Figure 4-10 the temporal and spatial diversity in solar generation over the past 40 years is depicted for 

two NUTS-2-regions in Germany. For sake of visibility, the weekly moving average of the hourly time series 

data is plotted. Additionally, the 40 time series per region are plotted as fan charts to visualize the level of 

uncertainty in historic data by providing the all-time median and percentiles respectively. The NUTS-2-region 

DE50 is located in the north of Germany near the coast and DE27 is located in Bavaria in southern Germany 

(see Figure 2-3). As can be seen, solar capacity factors across Germany are quite similar. In comparison to 

wind capacity factors the solar generation is heavily dependent on the season. 

 

Pfenninger and Staffel compared their results with weekly average capacity factors of ENTSO-E to validate 

their results on country level. In Figure 4-11 one exemplary result (Germany 2014) of their comparison using 

their calibrated GSEE simulation model is depicted. 

Figure 4-11: Overview of the approach used to model PV power output (taken from [38]) 

Figure 4-10: Exemplary visualization of solar capacity factors for two NUTS-2-regions in Germany 

(raw data taken from [96]) 
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As shown by Pfenninger and Staffel [38] the GSEE simulation model is able to reproduce the intrinsic 

characteristics of solar power generation in Germany (and other European countries as well) on a weekly 

basis in the analyzed year. The authors of [38] have carried out extensive work to validate their results on an 

annual, monthly and hourly basis for most of the European countries. Furthermore, they have undertaken the 

seasonal and diurnal trends a detailed analysis country by country that can be found in the supplementary 

material of [38]. In conclusion, it can be stated that performance of the GSEE model is suitable for the 

approach taken by FlexPlan. However, Pfenninger and Staffel remark that the model tends to overestimate PV 

generation in the southern EU countries, but still being applicable for EU-wide analysis. 

Thus, it can be concluded that the hourly capacity factors derived by Pfenninger and Staffel (publicly 

available at www.renewables.ninja [96]) for 40 historical weather years on NUTS-2-Level are considered as 

adequate to model solar power generation in this project.  

Similar to the generation of wind power time series (cf. Figure 4-8), the installed PV capacities per node 

provided are assigned are assigned to exactly one NUTS-2-region. As a consequence, the corresponding time 

series of hourly generation is obtained by elementwise multiplication of the capacity factors for this NUTS-2-

region with the nodal PV capacity of each node inside this NUTS-2.  

Modelling spatial correlations 

The climatic database created in this task contains capacity factors per NUTS-2-Region, i.e. characteristic 

differences in wind and solar generation due to heterogeneous weather conditions are considered in detail. 

The following Figure 4-12compares NUTS-2-Regions and transmission grid nodes modelled in Germany. 

As can be seen from Figure 4-12 the number of transmission grid nodes exceeds the number of NUTS-

regions significantly. It should be noted that this is the case for nearly all countries modelled within FlexPlan. 

Bosnia Herzegovina, Montenegro, North Macedonia and Luxembourg are exception as they do not have more 

than one NUTS-2-region. As a consequence, an intermediate step has to be carried out to generate nodal time 

series data based on NUTS-2-level capacity factors. The intermediate step includes the allocation of nodal 

installed vRES capacity information to NUTS-2-Regions considered in in this task. Thus, for each modelled 

node and NUTS-region it is checked whether a node is located inside a NUTS-2 region. As a result, each 

modelled transmission grid node      is assigned to exactly one NUTS-region      such that the installed 

wind and solar capacity per NUTS-2-region     
     can be calculated as the sum of its assigned grid nodes for 

one specific macro-scenario     : 

    
     ∑    

    

   

        

After calculating the installed capacity per NUTS-region for one specific macro-scenario     
    , the nodal 

time series of power generation for wind and solar for one operational scenario      is determined by 

multiplying the installed capacity with the technology specific hourly capacity factors        
     (for wind and 

solar) in the respective NUTS-region   and in each time step  : 

        
        

            
                    

To put in a nutshell, individual climatic conditions are considered per NUTS-2-Region to model spatial 

correlations in wind and solar power generation all over Europe. For sake of flexibility and applicability of the 

scenario and time series generation method, climatic conditions are indirectly modeled in terms of bias-

http://www.renewables.ninja/
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corrected hourly capacity factors that are easily merged with installed capacities provided as input. However, 

it has to be noted that this approach will lead to identical generation profiles with respect to the shape at all 

nodes that are assigned to the same NUTS-2-Region. This might be a problem for very detailed studies, but 

should not be a major drawback in Pan-EU expansion planning, as large-scale spatial correlations are 

considered and NUTS-2-Level can be considered as adequate for transmission grid studies.  

4.2.2. Hydro power 
Run of River (RoR) and reservoir generation as well as natural inflows are treated as stochastic inputs 

to the planning problem, as these parameters are heavily dependent on hydrological conditions. In contrast to 

wind and solar power generation it is important to note that hydro generation cannot be directly derived from 

climatic conditions with physical models. On the one hand, the power output hydro power plants depends on 

the availability of water, i.e. natural inflows, just as wind and solar power plants are dependent on climatic 

conditions. However, hydro power plants are able to store water in reservoirs enabling them to be 

dispatchable within certain limits, which clearly distinguishes them from non-dispatchable vRES. On the other 

hand, hydro power plants have to consider additional operational limits, e.g. minimum and maximum 

reservoir levels and generation, restricting their operational flexibility. 

With regard to RoR generation the minimum throughput, i.e. the flow rate, is the most influencing factor 

causing a non-flexible minimum production capacity leading to a partly non-dispatchable power output. 

Figure 4-12: Comparison of NUTS-2-Regions with modelled transmission grid nodes in Germany 
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Reservoir plants’ as well as open-loop pumped storage plants’ generation is impacted by natural inflows as 

well as their respective (initial) storage capacities significantly. Taking this into account, a database containing 

relevant hydrological conditions and parameters to model hydro generation has been set up. 

The hydrological database contains hourly capacity factors for RoR generation, normalized minimum 

and maximum RoR and reservoir generation, normalized minimum and maximum reservoir levels and 

cumulated natural inflows for reservoir and open-loop pumped storage plants for most of the European 

countries for (1982 - 2017) 36 historic years. The hydrological database’s spatial level of detail is depicted in 

Figure 4-13. 

The initial daily and weekly absolute values of realized generation as well as minimum and maximum 

generation have been calculated by Milano Multiphysics S.r.l.s. for the ENTSO-E using a statistical model. A 

transfer function was built by correlating historical water volumes flowing in rivers with the corresponding 

hydro power generation for a number of sample years. ENTSO-E published the dataset including a short 

documentation [101] as part of its Summer Outlook 2020 [102].  

Generating time series data 

Similar to wind and PV capacity factors, hourly RoR capacity factors representing normalized generation 

profiles (in the interval [0, 1]) have been calculated based on ENTSO-E’s initial dataset including absolute 

values for hydro power. Hydro capacity factors are calculated by dividing the realized generation    
    (taken 

from ENTSO-E’s new hydro dataset) by the installed reference capacity       (provided in ENTSO-E’s new 

hydro dataset as well) multiplied with the specific observation period    taking into account that part of the 

published data is either some parameters on a daily or weekly basis: 

    
      

   
   

        
 

Figure 4-13: Overview of the hydrological database for RoR and reservoir capacity factors 

ALBANIA AL 1982 - 2017 LUXEMBOURG LU 2 1982 - 2017

AUSTRIA AT 1982 - 2017 LATVIA LV 1982 - 2017

BOSNIA-HERZEGOVINA BA 1982 - 2017 MONTENEGRO ME 1982 - 2017

BELGIUM BE 1982 - 2017 MACEDONIA MK 1982 - 2017

BULGARIA BG 1982 - 2017 NETHERLANDS NL 1982 - 2017

SWITZERLAND CH 1982 - 2017 NORWAY NO 3 1982 - 2017

CZECH REPUBLIC CZ 1982 - 2017 POLAND PL 1982 - 2017

GERMANY DE 1982 - 2017 PORTUGAL PT 1982 - 2017

SPAIN ES 1982 - 2017 ROMANIA RO 1982 - 2017

FRANCE FR 1982 - 2017 SERBIA RS 1982 - 2017

GREECE GR 1982 - 2017 SWEDEN SE 4 1982 - 2017

CROATIA HR 1982 - 2017 SLOVENIA SI 1982 - 2017

HUNGARY HU 1982 - 2017 SLOVAKIA SK 1982 - 2017

IRELAND IE 1982 - 2017 TURKEY TR 1982 - 2017

ITALY IT 6 1982 - 2017 UNITED KINGDOM UK 1982 - 2017

LITHUANIA LT 1982 - 2017

Country
Country

Code

Market 

Zones
Hydro RoR CFCountry

Country

Code

Market 

Zones
Hydro RoR CF
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For sake of consistency, within this task, daily and weekly time series data were interpolated to hourly values 

that are in line with the temporal resolution of the FlexPlan planning tool. 

The statistical method that was developed and applied by Milano Multiphysics for ENTSO-E to generate 

time series of the electrical output of hydro power plants and their respective operational constraints is based 

on machine learning (neural networks) as there is no way of applying physical models in the field of hydro 

power yet. The statistical model makes use of the total unregulated inflows that were calculated by the 

European Hydrological Predictions for the Environment and consists of a high resolution (E-HYPE) [103] 

model of the Swedish Meteorological and Hydrological Institute (SMHI). Furthermore, a number of additional 

climatic parameters based on reanalysis from Clim4Energy – Copernicus Project [104] were used by Milano 

Multiphysics as an input for the statistical model. Figure 4-14 visualizes the correlation between inflows per 

catchment hydro power plant’s production.  

Besides the hydrological and climatic data, detailed technical information and historical production data of 

hydro power plants for eight historic years have been collected on a unit-by-unit basis by ENTSO-E and 

provided to Milano Multiphysics as training data for the statistical machine learning model.  

The basic idea is to use historic observations (2010 - 2017) of hydro power generation in GWh per day 

from ENTSO-E and SMHI E-HYPE reanalysis data (1982 – 2017) of unregulated inflows in m³ per day to derive 

a transfer function (m³/d  GWh/d) that can be used to calculate hydro generation based on historical 

inflows for periods outside the training period. The working principle of the statistical model applied by 

Milano Multiphysics can be summarized as follows: 

1. Time series of SMHI’s total unregulated inflows were normalized to obtain zero-mean and unit 

standard deviation distributions to ensure an optimal data decomposition in the following 

dimensionality reduction phase. 

Figure 4-14: Correlation between inflows per catchment and hydro power plant’s production (taken from [101]) 



 

 

Copyright 2020 FlexPlan    Page 35 

 

FlexPlan 

2. Singular-value decomposition for dimensionality reduction by orthogonal decomposition of SMHI 

inflow data to avoid an overfitting of the regression and improve computational performance. 

3. Estimation of transfer functions through regression by least squares plant by plant for SMHI’s 

inflows data and respective hydro power plant’s observed generation. 

4. Post-processing of production data in its spectrum by Fourier transformation analyzing 

intertemporal dynamics of pure and regulated RoR plants. 

5. Zonal aggregation and validation of results with an independent historic input data set that has 

not been used in the training process to check if the model tends to overfit. 

In Figure 4-15 Milano Multiphysics’ modeled and real RoR generation in Italy (North) between 2010 and 

2016 is compared. Additionally, the resulting hydro generation from 1981 to 2016 of Milano Multiphysics’ 

machine learning approach based on ENTSO-E’s provided training data is visualized. The statistical model 

performs quite well and is able to generate hydro generation time series data for various historic years using 

the identified transfer functions. Thus, the ENTSO-E hydro data set is used as basis for hydro time series 

generation in this project.  

Summarizing, the ENTSO-E dataset provides the following outputs per country for 36 years: 

 Run-of-River and Pondage: 

o Reference installed capacity (MW) 

o Reference storage capacity (MWh) 

o Daily absolute generation (GWh) 

o Daily min. / max. generation constraints (MW) 

 Reservoirs:  

o Reference installed capacity (MW) 

Figure 4-15: Comparison of modelled and real hydro generation on national level (taken from [101]) 
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o Reference storage capacity (MWh) 

o Weekly min. / max. reservoir levels (p.u.) 

o Weekly min. / max. generation constraints (MW) 

o Weekly cumulated inflows (GWh) 

 Open Loop Pump Storages: 

o Reference installed capacity (MW) 

o Reference storage capacity (MWh) 

o Weekly min. / max. reservoir levels (p.u.) 

o Weekly min. / max. generation constraints (MW) 

o Weekly cumulated inflows (GWh) 

In Figure 4-16 the distribution of the daily RoR generation is depicted exemplary for Italy (North). 

As can be seen from Figure 4-16 the median of the aggregated hydro generation by RoR plants has a 

distinctive seasonal pattern. It has to be noted that the pattern is different for each country due to different 

heterogeneous factors influencing hydro generation in general. Considering the visualized percentiles, the 

level of uncertainty in hydro generation over time becomes directly visible.  

Within this task, firstly, the absolute values taken from the ENTSO-E dataset were normalized considering 

the provided reference capacities. Secondly, daily and weekly parameters were interpolated to obtain an 

hourly time series to be in line with the other inputs of the planning tool. Subsequently, the hourly hydro 

capacity factors        
       for a country      is used to calculate the nodal hourly hydro RoR generation in 

each time step      for one operational scenario      considering the nodal installed capacities of hydro 

RoR     
           of one specific macro-scenario      as an input: 

Figure 4-16: Distribution of daily run of river generation for 36 historical years in Italy North 
(raw data taken from ENTSO-E [102]) 
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The methodology applied in this task for hydropower time series generation is depicted in Figure 4-17. 

The installed hydropower capacities per node (differentiated by hydro type) provided by MILES as input are 

assigned to exactly one ENTSO-E market area. As a consequence, the corresponding time series of hourly 

capacity factors for this market area is elementwise multiplied with the nodal hydro capacity of each node 

inside this area to generate hydro RoR feed-in time series.  

Modelling spatial correlations 

The hydrological database created in this task contains capacity factors per country and in some cases 

per ENTSO-E market zone if a country contains more than one market zone, i.e. characteristic differences in 

hydro generation due to heterogeneous climatic and hydrological conditions are considered less detailed in 

comparison to vRES generation on NUTS-2-Level. However, individual hydro conditions in terms of 

generation profiles and reservoir levels shaping total hydro generation are considered per country. Thus, the 

individual intrinsic characteristics of hydro generation in Scandinavia and the Alpine region are considered as 

well as possible considering the amount of available data as well as its level of detail. 

  

Figure 4-17: High level flow chart of methodology for hydro time series generation 

Installed Capacities 
(incl. geo reference) 

Market Areas
Shape file / Polygon

Capacity Factors
per market area

Assign each 
provided location, 

e.g. node, to exactly 
one market region 

Elementwise multiply installed 
capacity at each location with 

respective hourly capacity 
factors at the location

Inputs

Time Series Generation Outputs

Generation
per provided location 

on an hourly basis 
for 8,760 time steps.
For in total 40 years. 



 

 

Copyright 2020 FlexPlan    Page 38 

 

FlexPlan 

4.2.3. Load 
With regard to the demand side, the electrical load demand is treated as a stochastic input parameter in 

FlexPlan’s new planning tool, as it is heavily dependent on climatic conditions. The outdoor ambient 

temperature is the most influencing factor, as electrical heating is widely used in the commercial and domestic 

sector. The additional volatile electrical demand for heating and cooling changes throughout the year 

(seasonality). Additionally, extreme events, such as colds spells in winter and heat waves / droughts in 

summer impact the peak load and thereby the load profiles during such kind of extreme events. With these 

aspects in mind, a database containing load-temperature sensitivity factors has been set up. 

The demand sensitivity database depicted in Figure 4-18 contains in total six parameters to model the 

load-temperature sensitivity for most of the European countries by characteristic curves derived from 

regression analyses that have been carried out by the ENTSO-E. 

Figure 4-18: Overview of the demand database for load capacity factors and sensitivity factors 
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The parameters used to model the electrical loads’ sensitivity with respect to the outdoor temperature are 

stylized in Figure 4-19. For comparably low temperatures beneath 15°C, the electrical energy consumed for 

heating increases significantly (Heating Zone). If outdoor temperature’s daily average remains between +15°C 

and +20°C, neither heating nor cooling is used. Thus, no additional energy is consumed by heating and cooling 

devices (Comfort Zone). If the outdoor temperature rises beyond 21°C, cooling devices are turned on (Cooling 

Zone). As a consequence, the amount of additional energy used for cooling increases as well. Taking into 

consideration that heating and cooling zones have limits, due to saturation effects lower and upper bounds 

are defined respectively (Saturation Zones). 

Due to individual heating concepts across Europe, e.g. France vs. Germany, it is obvious that the following 

parameters defining the presented zones differ from country to country significantly: 

 [- Infinity,     heating zone saturation temperature] (Saturation) 

 [heating zone saturation temperature, heating zone limit temperature]   (Heating zone) 

 Load-temperature sensitivity factor inside heating zone    
     [MW/°C] 

 [heating zone limit temperature, cooling zone limit temperature]  (Comfort zone) 

 [cooling zone limit temperature,  cooling zone saturation temperature] (Cooling zone) 

 Load-temperature sensitivity factor inside cooling zone    
     [MW/°C] 

 [cooling zone saturation temperature, + Infinity]    (Saturation) 

To approximate the additional demand due to deviations in climatic conditions the so-called load-

temperature sensitivity factors (   
     and    

    ) are used, defining the line’s slope, as can be seen from 

Figure 4-19. The key advantage of these characteristic curves is that they can easily be used to calculate load 

time series considering a reference demand time series (and information on the assumed reference year) is 

provided, e.g. the ones coming from MILES. The load-temperature sensitivity factors themselves have been 

calculated by ENTSO-E applying a regression model and published in [106].  

Figure 4-19: Schematic visualization of load-temperature sensitivity by: heating, comfort, cooling, and 
saturation zones that are used to form the characteristic curves and its parameters (taken from [105]) 



 

 

Copyright 2020 FlexPlan    Page 40 

 

FlexPlan 

Generating time series data  

For the generation of hourly load time series data, information from different internal (climatic database 

and demand coefficients database) and external sources (initial nodal load time series as of WP 4) are merged. 

The initial load time series calculated with MILES are based on macro-assumptions concerning the future 

energy system as well as one specific historical reference year. Thus, it is essential to match the reference 

year used in MILES with the reference year used in this tasks’ scenario and time series generation approach, 

as the change in load due to deviations in the ambient temperature is calculated as a time series of differences. 

In Figure 4-20 the distribution of historical hourly temperature values (2m over ground) is depicted for 

Germany, as an exemplary excerpt of the developed climatic database. 

Considering that the hourly load time series of one specific macro-scenario that has been generated based 

on reference climatic conditions, e.g. historic observations from 2012, the climatic conditions        from 

the climatic database are considered as a reference in the scenario generation approach. Subsequently, 

another historic observation      is randomly drawn from the climatic database and used to calculate the 

absolute hourly deviation (            

    and            

   
) of the ambient temperature for a country      taking 

into account the country specific heating, cooling, comfort and saturation zones (cf. Figure 4-19). Once the 

directional differences are calculated for each hour of the year, the increase/decrease (     
          and 

     
           with respect to the reference year is calculated considering the zones’ specific slopes (   

     and 

   
    ): 

            

              
                 

         

            

              
                  

   
     

Figure 4-20: Boxplot of historical ambient temperatures in Germany from 1980 – 2019 (raw data taken from [96]) 
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In Figure 4-21 the temporal and spatial diversity (only due to temperature-sensitivity) in electricity 

demand over the past 40 years is depicted for Italy’s six market zones. For the sake of visibility, only a limited 

number of 400 time steps (hours 5,400 to 5,800 of the year) is plotted. Additionally, the 40 time -series per 

region are plotted as fan charts to visualize the level of uncertainty in historic data as percentiles. There are 

six market areas in Italy. Basically, basically dividing the country in four zones: North (ITN1), Central North 

(ITCN), Central South (ITCS), South (ITS1) as well as two islands Sardinia (ITSA) and Sicily (ITSI) forming two 

additional zones. As can be seen from Figure 4-21, the hourly load capacity factors in the different regions 

have their individual characteristics. Furthermore, the level of uncertainty due to temperature-sensitive loads 

is less prominent in the ITSA zone. 

Figure 4-21: Exemplary visualization of load capacity factors for Italy’s market areas  
(raw data taken from ENTSO-E [102]) 
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The nodal load time series is generated in a similar fashion as in the case of hydro generation (Figure 

4-17). Starting from nodal demand provided by MILES the scenario generation approach assigns each node to 

exactly one ENTSO-E market area. As a consequence, the corresponding time series of hourly load capacity 

factors for this market zone is then elementwise multiplied with the installed load of each node inside this 

area to generate demand time series. Thereby the installed load per node is defined as the reference demand 

time series’ maximum value over time at each specific node.  

Modelling spatial correlations 

The time series of load differences with respect to the reference year per market zone are broken down on 

the nodal level. Therefore, it is assumed that the spatial distribution of deviations due to temperature is 

proportional to the hourly share of the nodal load with respect to the total load. To generate the final nodal 

load time series including uncertainty the reference time series coming from WP 4 and the calculated delta 

time series are summed up. 

        
                

         
           

        

           

        
  (            

                      

         )     

As there is no detailed information on the spatial distribution of load’s temperature sensitivity, spatial 

correlations are modelled indirectly through the application of MILES by allocating the national demand to 

individual transmission grid nodes. As a consequence, using nodal weighting factors based on the hourly 

reference demand seems to be more realistic than an equal distribution of the differences over all grid nodes. 

4.2.4. Outages of thermal power plants 
The scenario generation and reduction approach developed in this task is dedicated to tackle long-term 

uncertainties. Short-term uncertainties in terms of grid related outages, e.g. the outage of transmission lines, 

can be considered in the new planning tool itself rather than in the input time series. However, mid-term 

uncertainties such as planned outages of thermal power plants can impact the operational scenarios results 

heavily. As such, thermal power plant availabilities have been integrated as a stochastic input to new planning 

tool. As detailed power plant information is collected to build the Pan-EU scenarios and market simulations 

are carried out to derive the border conditions for the regional cases, an existing method of the MILES 

simulation framework is applied to generate unit by unit availability profiles. For sake of completeness the 

modelling approach is presented briefly. 

Thermal power plants are subject to periods of planned outages to refuel the units or perform preventive 

maintenance operations. These non-availabilities are typically planned on an annual basis considering the 

expected seasonality of the stochastic inputs, e.g vRES injections and demand. Thus, maintenance scheduling 

can be computed only once and considered as constant for each operational scenario. In contrast, forced 

outages of individual units occur by chance. Thus, forced outages due to technical problems or other random 

incidents have to be treated as an uncertain input in the planning tool. 

Generating time series data 

To consider power plant outages a binary time series is created where a units’ availability is set to 1, when 

the plant is generally ready for operation and to 0, if the plant is not (i.e. it is in an outage state). The binary 

time series are generated for each thermal power plant based on two characteristic parameters [107]: 
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 Outage rate (    ): Average proportion of time in which a unit is out of order. 

 Outage duration (     ): Typical duration until a unit is back in operation. 

The characteristic parameters can differ significantly depending on the fuel-type and the age of a plant 

[107]. The failure probability (     ) corresponding to the probability of a failure in     assuming the unit 

was available in    is defined in accordance [107] to as: 

      
    

           (       
 

The algorithm generating daily outage time series for individual units is visualized in Figure 4-22  

 

For each day d, a random number x [0, 1] is generated based on a standard uniform distribution. It is 

assumed that the plant is initially available on the first day (d = 1). If the random number x is larger than the 

failure rate, the unit stays available in the considered day d and the iterative procedure is repeated for next 

day. In case the randomly generated number is smaller than the failure rate, the unit is set unavailable for its 

specific outage duration. The iterative process continues from the day the unit becomes available again 

(d+       ) until the end of the year. A more detailed discussion of the algorithm can be found in [107]. 

  

Figure 4-22: Algorithm to generate thermal power plant availabilities considering forced outages (adapted based on [67]) 
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4.3. Outputs / Results 

The methodology previous sections (cf. section 4.2.1 - 4.2.3) provides a number of time series for each 

transmission grid node considered in the planning model, taking into account generation and load capacity 

factors, of a maximum of 40 different realizations. As such, each operational scenario includes a set nodal time 

series data (8,760 time steps) for each Monte Carlo year sampled by historical climatic conditions from (1980 

- 2019).  

An operational scenario is formed by a set of nodal generation and load time series for the stochastic 

inputs of the planning problem namely vRES and hydro generation as well as the electrical demand. As 

depicted in Figure 4-23 the output of the scenario generation approach can graphically be interpreted as a set 

of three-dimensional matrices including the nodal generation and load data for each time step and realization. 

For each uncertain input parameter in terms of wind, solar and hydro generation as well as the load such 

kind of 3D matrix is generated including hourly feed-in and demand per node and realization. Additionally, 

hydro generation constraints in terms minimum and maximum production capacities, reservoir levels and 

inflows are generated per market zone. 

Taking into account the grid model’s level of detail (5,100 nodes for the entire Entso-e region), the hourly 

resolution of the scenario data (8,760 time steps), the amount of historical weather data (40 years) and the 

number of macro-scenarios (3) per target year (2030-2040-2050) as well as a variety of thermal generator 

outages, the number of input parameters generate becomes very extensive. Thus, a scenario reduction is 

applied to reduce complexity as described in the next section. 

  

Figure 4-23: Schematic visualization of scenario generation’s results 
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5. Scenario Reduction Approach 

5.1. Planning input requirements and nomenclature 

The input of the planning problem, to be provided by the scenario reduction, is the reference demand and 

generation. These are defined as (see section 2.1): 

 Reference demand:        
   

                    

 Reference generation:        
   

                   

With    the set of demand elements,    the set of generators (Wind, PV, Hydro generation),    the set of time 

steps in the planning horizon, and    the set of planning target years. Within the FlexPlan project 2030-2040-

2050 are defined as target years. It is assumed that generation and demand time series are required per node. 

Within this document, one input scenario consists of a set of     
   

        
   

values, i.e. the reference demand 

and generation time series of all load and generation (per network node) during 1 target year. 

The objective of the scenario reduction method is to reduce the overall set of possible demand-generation 

scenarios, with size m, to a limited set of s scenarios, with a time series length of  (     A schematic overview 

of this procedure is shown in Figure 5-1. 

In the scenario generation approach, see section 4, is explained that data on reference demand and 

generation will be provided per node for 40 climate years. The length of the time series required as input for 

the planning tool,  (   , are initially set at one year of hourly time steps. Consequently, the overall space of 

possible planning scenarios, m, equals 40. The size of the reduced scenario set, s, depends on the 

computational performance of the planning tool, but is expected to be limited, at least to a number less than 

10.  

The computational performance of the planning tool needs to be sufficient to find a solution in a 

reasonable amount of time, therefore it may be required that the input time series are reduced in length 

(instead of a yearly time series, limited to e.g. one month, one day or one week). In that case, the generated 

scenarios will need to be split first into scenarios of the required length. Thus, if the time series of length 

 (    is set to one week by the planning tool computational time constraints, the 40 climate year scenarios 

have to be split up into 2080 (=40x52weeks) scenarios of 168 hourly time steps. As explained above, 

clustering will be used to achieve scenario reduction.   

Figure 5-1 Schematic overview of the scenario reduction objective. 
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5.2. Scenario Reduction using clustering 

Clustering is a machine learning technique that is used to find groups, i.e. clusters, of data objects within a 

dataset. Within the context of scenario reduction for transmission network expansion planning, the objective 

of the clustering is to find a limited, yet representative, set of input scenarios of the planning problem. A 

clustering algorithm detects clusters of ‘similar scenarios’ within the overall dataset of possible scenarios. It is 

then assumed that solving the planning problem for the set of input scenario’s that consists of one scenario 

per cluster will lead to a solution that is the same as or close to the solution that would be calculated if the 

complete set of possible input scenarios would be used. 

To use clustering, the data objects must have common features by which they are compared. The network 

state, or stated differently, the need for transmission capacity or flexibility, is defined by the load and/or 

renewable generation at each network node. Similar network states are thus defined by a similar combination 

of nodal load and generation. Both load and generation vary over time, as such, load/generation time series 

can be considered similar when a similar variation in the load/generation time series is observed. Within the 

network expansion planning problem, one data object consists of (all of) the time series of load and 

(renewable) generation at all of the nodes of the network. The data objects thus have features in two 

dimensions: 

 Node dimension: the value of load/generation at each separate node, or the power of each 

demand/generation element can be considered as separate features. The number of node 

dimension features equals  (  )   (   . 

 Time dimension: the node values at each separate time step of the time series can be considered 

as separate features. The number of time dimension features equals  (     

In total, one observation or one data object thus reaches ( (  )   (      (    features. Given the size of 

the considered networks, as well as a minimal required time series length, this number of features become 

very large. 

It must be noted that using observations with a very large number of features holds the risk of suffering 

from the so called ‘curse of dimensionality’ [90]. In this case, feature reduction techniques should be used to 

make sure sensible clusters are produced from the dataset. 

5.2.1. K-means clustering for scenario reduction 
A plethora of different clustering methods exist in the literature. These algorithms are often categorized as 

partitional clustering and hierarchical clustering methods [91].  

Hierarchical clustering methods construct the clusters by recursively partitioning the data objects. In a 

bottom-up approach, where each object initially represents a cluster of its own. Then clusters are successively 

merged until the desired cluster structure is obtained. The result of the hierarchical methods is a so-called 

dendrogram. A dendrogram is a tree-shaped diagram which represents the nested grouping of objects (i.e. 

when branches of the tree are joined) and similarity levels at which groupings change. A clustering of the data 

objects is then obtained by cutting the dendrogram at the desired similarity level. The name "hierarchical 

clustering" comes from the result of the clustering which gives an extensive hierarchy of clusters that merge 

with each other at certain distances. 
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A partitional clustering algorithm obtains a single partition of the data instead of a clustering structure, 

such as the dendrogram produced by a hierarchical technique. Partitional methods relocate instances by 

moving them from one cluster to another, starting from an initial partitioning. These clusters should fulfil the 

following requirements: each cluster must contain at least one data object, and each object must belong to 

exactly one cluster. One of the most popular partitional clustering algorithms is K-means clustering. 

K-means clustering finds the k cluster centres, also referred to as centroids, and assigns the objects to the 

nearest cluster centre such that the squared distances from the cluster are minimized [78]. When using K-

means clustering, a predefined number of clusters needs to be set, as well as the distance metric used. The 

problem that is solved with K-means clustering is the following: 

          
 

∑ ∑‖    ‖
 

    

 

   

 

With x = (x1, x2, …, xn) the original set of objects (i.e. within the FlexPlan project, the original set of scenarios), 

each forming a multidimensional vector, and with K = (K1, K2, …, Kk) the resulting clusters, where μi is the mean 

of set Ki (i.e. the cluster centroid). This optimization problem is solved iteratively. A number of variants of this 

algorithm exists, e.g. where not the mean but the median is used (k-medians), or where the centroid is 

restricted to be a member of the cluster (k-medoids). 

In the literature, it has been shown that the number of clusters needs to be high enough to be able to cover 

the full space of operating conditions with sufficient accuracy [69] [72]. One drawback of K-means clustering 

is that it may converge to a local optimum, depending on its starting condition (i.e. choosing the initial 

centroids), therefore it is often advised to run the algorithm several times, with different initialization 

conditions. Because of the widespread knowledge and application of K-means as clustering method, this 

method will be used for scenario reduction in this project. Also, K-means clustering is known to be able to 

handle large datasets [92]. However, it must be noted that other clustering methods could be applied within 

the scenario reduction context.  

To determine the similarity/difference between the objects in the given dataset, a similarity metric needs 

to be defined. For example, if the objects within a dataset have vectors of coordinates as features, a similarity 

measure can be interpreted as the distance (length, vector norm) between the data objects. The smaller the 

distance gets, the closer (i.e. the more similar) the data objects are. An often -used metric to define the 

similarity of load/generation time series is the Euclidian distance, e.g. used in [85] and [75], and will therefore 

be also used within this project. The Euclidian distance d between two data objects    and    with features f is 

defined as: 

 (     )  √∑ (         )
 

 
 

A drawback of using the Euclidian distance as a similarity metric is the tendency of the largest-scaled 

feature to dominate the others. In the context of load/generation time series, this would entail that the 

variation of the largest generator (or load) within the system considered would dominate the choice of 

clusters, leading to a possible underrepresentation of other important events in the system. The solution to 

this problem is to normalize the features, i.e. the power values, to a common range. Therefore, it is proposed 
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to normalize the load and generation power values to their nominal capacity, which leads to feature values to 

be between 0 and 100%.  

To illustrate the clustering approach, Figure 5-2 shows the result of the clustering of weekly wind profiles 

using K-means clustering. In this example, 40 years of hourly wind time series are split up in weekly profiles 

(2080 weekly profiles), and then clustered into ten clusters. Each subplot shows the weekly profiles of 1 

cluster, the centroid of the cluster is shown as a black line. As stated above, the centroid is defined as the 

‘multidimensional mean’ of the cluster, the centroid is (not necessarily) a member of the original set.  

 

To illustrate hierarchical clustering, Figure 5-3 shows the result of the clustering of weekly wind profiles 

using Ward’s hierarchical clustering algorithm. The dendrogram shows that at a cutoff distance of 15, 10 

clusters can be identified. These clusters are separately plotted in Figure 5-4. In this figure, each subplot 

shows the weekly profiles of 1 cluster. As can be noticed, the result of the hierarchical clustering differs 

slightly from the clustering resulting from K-means clustering. 

Figure 5-2: Illustration of K-means clustering. Weekly wind power profiles are clustered in 10 clusters. Each 
subplot shows all profiles of 1 cluster, the black lines are the centroids of each cluster. The probability of each 

cluster is indicated above each subplot. 
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Figure 5-3: Illustration of hierarchical clustering. Weekly wind power profiles are clustered using Ward’s hierarchical 
clustering, the figure shows the resulting dendrogram. At a cut-off distance of 15, indicated by the black horizontal line, 10 

clusters are obtained. 

Figure 5-4: Illustration of hierarchical clustering: Weekly wind power profiles are clustered using Ward’s hierarchical 
clustering, resulting in 10 clusters. . Each subplot shows all profiles of 1 cluster, the probability of each cluster is indicated 

above each subplot.  
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5.2.2. Feature reduction 

As mentioned, when using observations with a very large number of features, clustering holds the risk of 

suffering from the so called ‘curse of dimensionality’. This means that too many dimensions cause every 

observation in the dataset to appear equidistant from all the others. In these cases feature reduction 

techniques should be used to make sure that sensible clusters are produced from the dataset. 

The considered data objects have ( (  )   (      (    features. When the considered network size, as 

well as the required time series length are large, feature reduction techniques might become necessary. 

Many feature reduction techniques and algorithms have been developed in the literature. Within this 

project, three approaches are proposed for possible application, namely Principal Component Analysis (PCA) 

and two variants of feature selection. The choice of the feature reduction technique strongly depends on 

the actual datasets and network characteristics.  

Feature reduction with PCA 

Principal component analysis is very often applied for feature reduction [94] of time series data. PCA is 

defined as an orthogonal linear transformation that transforms the data to a new coordinate system while 

preserving as much ‘variability’ (i.e. statistical information) as possible. This means that ‘preserving as much 

variability as possible’ translates into finding new variables that are linear functions of those in the original 

dataset, that successively maximize the variance and that are uncorrelated with each other. Finding such new 

variables, i.e. the principal components, reduces to solving an eigenvalue/eigenvector problem. The number of 

components to keep to retain maximal variance from the original dataset depends on the dataset used. The 

details of the techniques to be used can be found in literature, an extensive overview is given in [94]. 

The downside of PCA, and by extension of all feature reduction approaches that rely on applying a 

transformation of the dimension space, are that the physical meaning of the obtained components is often lost. 

Another attention point is that it is advised that the datasets on which PCA is applied, need to have a sample 

size that is (much) larger than the number of features, for the method to perform well [109].  

Within the FlexPlan project, PCA can be applied to the input datasets when the use of clustering on the 

original datasets shows to result in non-optimal clusters, because of the high number of dimensions in the 

dataset. To apply PCA, it is proposed to rely on existing implementations that are available as open-source 

libraries, e.g. the scikit-learn package for Python [93]. An illustration of the technique is given below, in 

section 6.2. 

Feature selection 

As an alternative approach for feature reduction, next to ‘transforming’ the features to a lower-dimensional 

parameter space, it is also possible to reduce the features by selecting the most significant features. This 

approach has the benefit that the physical meaning of the data objects is kept.  

Defining significant scenario features 

In first feature selection approach, a number of significant characteristics of the scenarios can be defined. A 

non-exhaustive list of significant characteristics that define, or specify, the different scenarios within the 

scenario set may be: 
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 Total demand, summed over all nodes and time steps 

 Total generated wind, PV and hydro power 

 Maximal demand 

 Maximal generated wind, PV and hydro power 

 Minimal demand, 

 Minimal generated wind, PV and hydro power 

 Maximal demand variation, i.e. maximal overall demand difference between two time steps 

 Maximal PV, wind, hydro variation 

 … 

To perform feature reduction by this form of feature selection, the chosen significant features have to be 

computed for each scenario within the original scenario set. Then, scenarios are represented by their 

significant features only. Clustering can then be performed on the set represented by its reduced features only 

(after normalization). 

The upside of this approach is that the physical features of the scenarios are kept, but at a minimal level 

however. The downside is that it is not straightforward to define a small set of significant features where the 

nodal variation of demand and/or generation within the feature set is still visible. 

Clustering the node dimension 

As a third method to reduce the number of scenario features, it is proposed to select only the time-dimension 

features and reduce the node dimension by applying clustering on the node-dimension features.  

With a dataset consisting of time series of t time steps and m variations of time series for each network node, 

the overall number of network states becomes    . A network state consists of a vector of n power values for 

a network with n nodes, and thus each time step a different network state occurs for each load-generation 

scenario. These network-state vectors can be clustered according to their nodal power. The result of this 

clustering step is m time series (of length t) of “cluster number values”. Thus, for each load-generation scenario 

consisting of n time series of node power values, one time series of cluster number values is derived. The 

Figure 5-5: Feature reduction: reducing the node-dimension. Similar network states are indicated with the same 
colour. The feature reduction step results in a time series of cluster number values. 
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( (  )   (      (    features of the original dataset are thus reduced to a dataset of  (    features. This 

process is illustrated in Figure 5-5. 

To be able to cluster the resulting lower-dimensional dataset to finally achieve the required reduced 

scenario set, the distance between the lower dimensional data objects has to reflect the distance or similarity 

between the objects of the original dataset. As mentioned previously in section 5.2.1, to compute the similarity 

between the scenarios, the Euclidian distance will be used. For network expansion planning problems, it is 

expected that the amount of renewable (non-dispatchable) generation produced at each time step is 

important to consider, as well as the amount of nodal demand. Additionally, time series with a similar global 

network load can be very different for the planning problem in the sense that the load might be divided over 

the network nodes in a very different way. Analogously, this holds as well for the generation.  

To make sure distance metrics are computed correctly, the cluster number values, of which the reduced 

dataset consists of, are ordered twice:  

1. The cluster number values are ordered according to the overall non-dispatchable generation 

of their cluster centroids. Centroids may have a similar (or same) global generation (i.e. when 

the generation is distributed over different nodes), then those centroids are ordered 

according to the injection per node. Thus, time series with network states with a very 

different global renewable generation will be very different. Clusters with a similar global 

renewable generation will differ less, but they can still significantly differ if the generation is 

divided over the different nodes in a very different way. 

2. Analogously, the cluster number values are ordered according to the overall demand. 

 

In this case, the scenario reduction clustering step (as explained in section 5.2.1) has to be applied twice, 

once for each value of cluster numbering above. The original data objects are then part of two groups. The first 

group is based on its renewable generation, and the second group based on its demand. The number of 

theoretically possible group-combinations is limited and depends on the size of the clusters used in the 

scenario reduction clustering step.  

To reach the final scenario clustering result, all scenario data objects with the same renewable-based and 

demand-based group number are grouped together.  

The advantage of this feature reduction method is that the effect of different nodal values remains in the 

reduced dataset. The disadvantage is that the method is more complex, and when scenarios having many time 

steps need to be reduced, the number of features can still be too large. An illustration of this method is given 

in section 6.2. 
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5.3.  Overall scenario reduction methodology 

The dataset to be clustered, consists of 40 year-long time series of hourly time steps (i.e. 8,760 time steps) 

for each network node. The result of the clustering are y time series (of length  (   , with  (    equal to 8,760 

or less) of load and generation power values. These y time series are chosen as the centroids of each cluster 

after K-means clustering is applied to the overall dataset. The size of each cluster is an indication of the 

probability of occurrence of that combination of load and generation present in that cluster. These 

probabilities can also be provided as input to the planning optimization tool, e.g. if a stochastic planning 

approach is envisaged. Depending on the computational performance of the planning tool, a feature reduction 

step needs to be applied to the overall dataset before the clustering step, to make sure that sensible results are 

produced. 

To conclude, the overall clustering-based scenario reduction methodology is outlined as follows: 

1. (if required) Split the yearly scenarios into scenarios with a (time-dimension) length equal to the 

setting required by the planning tool. The length is set to 24 time steps if representative daily 

scenarios are required, to 168 time steps, if weekly scenarios are required, etc. 

2. Normalize the load and generation time series as produced by the scenario generation, by the 

nominal capacity of the respective loads and generators. 

3. (If required) apply feature reduction by (a) applying PCA, (b) selecting and computing significant 

features, or (c) reducing the node dimension by clustering the node-dimension features. 

4. Perform K-means clustering on the overall, but possibly feature-reduced, dataset. The requested 

number of clusters s is defined by the computational efficiency of the planning tool and is provided 

as an input to the scenario reduction. 

5. Choose one representative scenario for each cluster. The computed cluster centroid is an option, 

but also a randomly chosen scenario belonging to that cluster can be used. If feature reduction was 

applied, choosing the cluster centroid is not an option, as the centroid in this case will not have the 

same dimensions as the original scenarios. 

6. Rescale the chosen scenarios back to their original values. 

7. (if required) Identify the importance of the representative scenario’s according to their cluster 

size. 
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6. Numerical Example 

To validate the scenario generation and reduction methodology with regard to its feasibility and 

computational performance a test case has been defined. A modified version of the 6-Bus Garver test system 

[108] applied to Italy, as defined for other testing activities within the FlexPlan project, is used to test the 

scenario generation and reduction method. Each node is located in one of the Italian market areas, as can be 

seen in Figure 6-1. 

The defined geographic locations of the six nodes are given in Table 6-1. Two PV generators have been 

placed in the system, replacing conventional generators. The first generator is installed at node 3 (IT-CS) with 

a capacity of 180 MW. The second one has a capacity of 240 MW and is located at node 6 (IT-SAD). 

Furthermore, there is one wind generator with a capacity of 240 MW at node 6 (IT-SAD). The assumed annual 

peak load at each location is also given in Table 6-1. 

Table 6-1: Node names, geographical location, and load and renewable generation properties of the test case. 

Node Node name Longitude Latitude 

Annual 

peak load 

[MW] 

PV 

generation 

[MW] 

Wind 

generation 

[MW] 

1 
Italy central 

north 
43.4894° 11.7946° 80 / / 

2 Italy north 45.3411° 9.9489° 240 / / 

3 
Italy central 

south 
41.8218° 13.8302° 40 180 / 

4 Italy south 40.5228° 16.2155° 160 / / 

5 Sardinia 40.1717° 9.0738° 240 / / 

6 Sicily 37.4844° 14.1568° / 240 240 

Figure 6-1: Geographic overview of the 6-Bus test case  
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6.1. Scenario generation 

For the proposed example network, scenario data was generated using the method outlined in section 4. 

Wind, PV and demand profiles were generated for each network node for 40 climate years. Figure 6-2 shows 

the first 1000 time steps of the wind and PV generation time series of all 40 generated scenarios. In this figure 

the sum of the wind, PV and demand profiles are plotted. 

Figure 6-2: A plot of the 40 generated scenario’s first 1000 time steps of the global demand, pv 
and wind profiles of the network  
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In Figure 6-3 the first 1000 time steps of the nodal balance (i.e. nodal demand minus nodal generation) of 

the 40 generated scenarios are shown. 

 

 

 

  

Figure 6-3: A plot of the 40 generated scenarios: the first 1000 time steps of the node balance of each 
network node. 
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6.2. Scenario reduction 

The purpose of the scenario reduction is to choose a representative but reduced set of time series out of 

the 40 generated scenarios. Of the 40 generated years, there are 35 years with data on demand and PV as well 

as wind, all correlated on time. Those 35 correlated years are used as input for the scenario reduction.  

To illustrate the scenario reduction methods, two sets of reduced scenarios were created for the example, 

a first set with time series length of 8760 time steps (i.e. one year), and a second set of with a time series 

length of 24 h (i.e. one day).  For each of the sets, different feature reduction methods were applied, and the 

different clustering results compared in the following paragraphs.   

In a follow-up step of the work presented in this deliverable, the impact of the clustering and specific 

feature reduction methods on the outcome of the planning optimization tool will be examined as part of the 

broader testing activities of the project.  Within those tests, an assessment will be made on how many clusters 

are required to achieve a good balance between obtaining reliable planning tool results and having acceptable 

computation times.  The same evaluation will be done to determine the impact of shorter input scenario time 

series on the planning tool decision making.   

To create the clusters for this example, the clustering algorithms available in the Python package Scikit-

Learn [93] have been used. 

6.2.1. Scenario reduction to yearly profiles 
In a first scenario reduction example, the size of the reduced set of scenarios is (arbitrarily) chosen to be 5, 

and the length of the representative scenarios is one year. The result of clustering the 35 scenarios into 5 

clusters is shown in Figure 6-4. In Figure 6-4, and following similar plots, each column indicates one cluster, 

and each row shows the demand, PV and wind profiles of all scenarios belonging to that cluster, in per unit 

Figure 6-4: Result of clustering the 35 climate-year scenarios. Each column shows the demand, PV and wind profiles of all 
scenarios in one cluster. Above each column the probability of each cluster is indicated. 
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value. Above each column the probability of each cluster is indicated. As can be seen from the plot, the 

scenarios differ mostly in terms of wind power. The yearly demand and PV for each cluster are rather similar.  

Figure 6-5 shows the global load, PV and wind profiles of the cluster centroids (left column in the figure) and 

one representative scenario of each cluster, chosen as a random pick from each cluster (right column in the 

figure). For clarity reasons, only the first 1000 time steps of each scenario are shown. The cluster centroids 

have less ‘peaks’ in their profiles, compared with the random chosen scenarios. A lack of power peaks in the 

scenarios might be a reason not to use cluster centroids as input for a planning tool, as non-optimal decisions 

might be taken. 

The pairwise distances between the 35 scenarios, ordered according to cluster number, are shown in Figure 

6-6. As mentioned in section 5.2.1, the Euclidean distance metric is used to compute similarity between the 

different scenarios. As shown in the plot, the distances between all yearly scenarios do not differ significantly, 

leaving it difficult to filter out different clusters from the scenario set. The reason for the small differences is 

most probably due to the very large feature size, therefore feature reduction will need to be applied. 

  

Figure 6-5: Global load, wind and PV profiles (first 1000 time steps are plotted), of the 
cluster centroids (left column) and one representative scenario of each cluster (right column). 
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To achieve an improved clustering result, PCA was applied to reduce the features of the scenarios. 

However, due to the very small example network, and very similar scenarios, clustering after feature 

reduction with PCA2 resulted in rather similar clusters (but with different probabilities), as shown in Figure  

6-7. In fact, it is advised to apply PCA as a method when the number of samples is (much) larger than the 

number of features, which is not the case for the example dataset., therefore, PCA is not the go-to method for 

feature reduction when year-long time series are required.   

  

                                                                    
2 The number of components to keep was set to 30 in the PCA application.  Analysis of the dataset showed 

that with this number, the variance retained in the dataset was above a threshold of 95%. 

Figure 6-6: Pairwise Euclidian distance between generated scenarios: the distance between each 
scenario-pair is indicated as a colour. A larger distance is indicated by a lighter colour. The scenario 
number is indicated on the horizontal and vertical axes. The cluster number is also given in the 
horizontal axes. 

Figure 6-7: Result of clustering the 35 climate-year scenarios, after applying PCA. Each column shows the demand, PV 
and wind profiles per cluster. Above each column the probability of each cluster is indicated. Similar clusters are obtained 

as with the case without PCA. 
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Additionally, feature reduction towards scenario characteristics has been applied. To achieve this, each 

scenario was characterised by 12 features, namely the features indicated in section 5.2.2. Those values are 

shown in Figure 6-8. In this figure, the characteristics are plotted for each scenario, and are coloured 

according to the cluster, to which the scenario belongs to. 

 

Figure 6-8: The computed characteristics of each of the 35 scenarios. Each subplot shows one characteristic for each 
scenario, coloured by cluster number. 
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The result of the clustering is shown in Figure 6-9. When comparing this clustering result with previous 

plots, it can be noticed that slightly different clustering results are obtained. When looking at the clustering 

results, in combination with the computed characteristics of each scenario, it seems that the produced results 

seem more relevant as input for the planning tool optimisation. 

Finally, also feature reduction by applying clustering on the node dimension was also performed on the 

test data. In this example, it is chosen to limit the number of possible grid states to 30. The resulting 30 ‘node 

dimension clusters’ are visualised in Figure 6-10. This figure shows the centroids of each ‘grid state cluster’.  

 

Figure 6-10: The identified possible grid state in the dataset: the grid states are reduced down to 30 possibilities. 

Figure 6-9: Result of clustering the 40 climate-year scenarios, after reducing the yearly time series to 12 characteristics.. Each 
column shows the demand, PV and wind profiles per cluster. Above each column the probability of each cluster is indicated.  
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Then, as explained in section 5.2.2, the scenarios, expressed as time series of ‘grid state cluster numbers’ 

are clustered in a subsequent step. The result of this clustering step is shown in Figure 6-11, and again 

different clusters are obtained. The obtained clusters are however quite similar to the ones obtained without 

any feature reduction applied. 

From the scenario reduction results it can be concluded that for the 6-node example, the yearly differences 

within the original scenario set are not very large.  Moreover, because of the size of the feature set, versus the 

number of samples in the original set, the clustering methods have difficulties finding sensible clusters within 

the original set.  Also, applying PCA as feature reduction method, as well as reducing the number of features 

by applying clustering on the node dimension does not provide satisfying results. Therefore the approach 

where the yearly scenarios are clustered according to a limited set of ‘main characteristics’ will be followed 

when assessing the planning tool decision taking versus the number of scenario inputs, when those scenarios 

have a timeseries length of one year. 

However, to determine which feature reduction method produces the most significant scenarios for the 

planning optimisation tool remains an open question. This cannot be determined based on the clustering 

results alone. Therefore within the planning tool testing activities, the planning tool decisions when fed with 

different scenario inputs will be compared to determine which feature reduction method performs best. 

  

Figure 6-11: Result of clustering the 40 climate-year scenarios, reducing the scenarios to time series of grid states. Each column 
shows the demand, PV and wind profiles per cluster. Above each column the probability of each cluster is indicated.  
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6.2.2. Scenario reduction to daily profiles 
In a second scenario reduction example, it is assumed that the planning tool restricts scenarios to a length 

of one day (24 hourly time steps), because of computational reasons. The clustering exercise is now repeated 

to result in 5 representative daily clusters. In order to perform the clustering, the yearly scenarios are first 

split up in daily scenarios before clustering, resulting in a dataset size of 12775 samples, and each sample a 

size of 144 features (6 nodes times 24 time steps). 

The resulting clusters after applying K-Means clustering without reducing the features on the dataset, are 

shown in Figure 6-12, with the probabilities of each cluster indicated on top of each column. It is clear that the 

different daily clusters are more distinct than the yearly clusters.  For example, week and weekend-days are 

discovered by the clustering, visible in the demand curves.   

  

Figure 6-12: Result of clustering the 40 climate-year scenario’s into daily profiles, without feature reduction 
applied. Each column shows the demand, pv and wind profiles per cluster. Above each column the probability of 

each cluster is indicated. 
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To investigate the influence of feature reduction on the daily-scenario clustering, each daily scenario was 

reduced to its ‘most significant’ characteristics (i.e. the same characteristics outlined in section 5.2.2). Figure 

6-13 shows the clustering result of the feature-reduced dataset. The produced clusters are similar to the 

clusters shown in Figure 6-12.  It seems that the reduced features reflect reasonably well the differences 

between the different days in the original dataset. 

Different clusters are however obtained when applying the feature reduction method outlined in 

section 5.2.2, i.e. by first clustering the node dimension. The result is shown in Figure 6-14. 

  

Figure 6-13: Result of clustering the 40 climate-year scenario’s into daily profiles, when 
reducing each daily scenarios to its twelve characteristics. Each column shows the demand, pv 
and wind profiles per cluster. Above each column the probability of each cluster is indicated. 
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In this case, it is not obvious from the clustering results itself which clusters are most significant for the 

planning tool optimisation problem: the clusters as shown in Figure 6-13 or the clusters as shown in Figure 

6-14.  

Therefore, within the planning tool testing activities, the planning tool decisions will be compared when 

fed with different scenario inputs, obtained using different feature reduction methods, to determine which 

feature reduction method performs best.  

  

Figure 6-14: Result of clustering the 40 climate-year scenario’s into daily profiles, 
when reducing after having first reduced the features by clustering on the node 
dimension. Each column shows the demand, pv and wind profiles per cluster. Above 
each column the probability of each cluster is indicated. 
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7. Conclusion 

The scenario generation and reduction approach developed in this task uses pan-EU macro-scenarios as an 

input to generate operational scenarios for the stochastic inputs, namely vRES and hydropower generation, 

electricity demand and power plant availabilities by applying a Monte Carlo approach. Subsequently, the 

generated operational scenarios / MC years are reduced by a clustering approach. The developed 

methodology consists of the following steps: 

 A time series generator, sampling a broad variety of possible realizations of vRES and hydropower 

generation based on historical meteorological and hydrological data  

 A time series generator, which samples temperature-sensitive load profiles based on sensitivity 

factors depending on outdoor ambient temperature 

 A heuristic, scheduling planned maintenance on a yearly basis 

 A heuristic, generating randomized thermal power plant outages and hourly availability profiles 

 A clustering algorithm, identifying and selecting a reduced sub-set of relevant operational scenarios 

An extensive literature review has been carried out to identify MC scenario generation and reduction 

techniques that are compatible with FlexPlan’s time-series based planning approach. Current literature and 

especially adequate data sources have been reviewed on each of the points mentioned above.  

As a consequence, significant work has been done on the identification of suitable datasets for modelling 

the uncertain inputs, namely vRES and hydropower generation and demand. Furthermore, spatial and 

temporal correlations in vRES generation time series of 40 historical years have been analyzed. Regarding 

wind and solar generation, a database containing hourly capacity factors for roughly 290 locations (NUTS-2-

regions) in Europe for in total 40 historic years has been created (cf. section 4.2.1). Additionally, uncertain 

phenomena in historical hydropower generation and demand time series of 36 historic years have been 

analyzed in depth. With regard to hydropower generation and load, two additional databases have been 

created containing hourly hydropower and load capacity factors for roughly 50 locations (market areas) in 

Europe, for 36 historic years in total (cf. section 4.2.2 and section 4.2.3). Considering the identified spatial and 

temporal correlations of vRES feed-in, hydropower generation and demand, a scenario generation approach 

based on detailed hourly capacity factors has been developed (cf. section 4.3).  

Considering the number of 40 operational scenarios per macro-scenario and target year, significant work 

has been done on the conceptual design of an adequate scenario reduction technique. The developed scenario 

reduction approach makes use of a clustering algorithm.  

Finally, the developed scenario generation and reduction method has been applied to a small-scale 

numerical example (6-node test case) for testing purposes. For this test case, 40 scenario years have been 

generated, and the set of 40 years has been reduced to (1) 5 yearly scenarios and (2) 5 daily scenarios. The 

scenario reduction exercise shows that the years within the original generated set do not differ significantly, 

therefore the clusters of yearly profiles identified within the generated set are also very similar. In contrast to 

this, the differences between the daily scenarios are much larger, and the produced clusters also differ 

notably.  

The different proposed feature reduction methodologies have been applied to the generated scenario set. 

Especially the yearly scenarios, have (too) many features when applying clustering without feature reduction. 
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It is however not straightforward to decide which feature reduction method produces the best results, i.e. the 

planning tool produces optimal decisions. Therefore, within the planning tool testing activities, the planning 

tool output will be compared when fed with different options of scenario clustering method as well as cluster 

sizes. This comparison will decide which feature reduction method to apply for the large regional case 

planning optimizations targeted within the FlexPlan project.  
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