

Advisory Board Meeting | 29th October 2020

FlexPlan project overview

Gianluigi Migliavacca RSE S.p.A.

Agenda

- This meeting
- Motivations of the FlexPlan project
- What will FlexPlan achieve?
- The FlexPlan consortium
- The new planning tool
- The pre-processor
- Pan-European and regional scenarios
- The FlexPlan web

This meeting

- Introduction (15 minutes)
 - Project overview (10 minutes Gianluigi Migliavacca, RSE)
 - Q&A (5 minutes)
- Planning tool modelling framework (55 minutes)
 - Presentation of project results (15 minutes Hakan Ergun, Katholike Universiteit Leuven)
 - Debate with stakeholders (40 minutes)
- Pre-processor and planning candidates formulation (55 minutes)
 - Presentation of project results (15 minutes Raul Rodriguez, TECNALIA)
 - Debate with stakeholders (40 minutes)
- Pan-European and regional scenarios (55 minutes)
 - Presentation of project results (15 minutes Jawana Gabrielski TU Dortmund and Nuno Amaro, R&D NESTER)
 - Debate with stakeholders (40 minutes)

Motivation of the FlexPlan project

- FlexPlan
- High-speed deployment of RES (challenging European target: 32% at 2030) is making T&D planning more and more complex and affected by a high level of uncertainty
- Grid investments are capital intensive and the lifetime of transmission infrastructure spans several decades: when a new line is commissioned it might be already partially regarded as a stranded cost
- Building new lines meets more and more hostility from the public opinion, which makes planning activities even longer and affected by uncertainties
- Variable flows from RES are generating a new type of intermittent congestion which can sometimes be well compensated with system flexibility: investments in a new line would not be justified.
- There is an on-going debate on the employment of storage technologies and system flexibility to make the RES grid injection more predictable ("virtual power plant")
- Hence the idea of establishing a new grid planning methodology considering the opportunity to introduce new storage and flexibility resources in electricity transmission and distribution grids as an alternative to building new grid elements

What will FlexPlan achieve?

1 – New planning methodology - Creation of a new tool for optimizing T&D grid planning, considering the placement of flexibility elements located both in transmission and distribution networks as an alternative to traditional grid planning: in particular, storage, PEV, demand response)

2 – Scenario analysis 2030-40-50 - New methodology applied to analyse six regional grid planning scenarios at **2030-2040-2050.** A pan-European scenario will deliver border conditions to initialize in a coherent way the 6 regional cases.

- 3 Regulatory guidelines FlexPlan goal is to provide:
- an optimized planning methodology for the future usage of TSOs and DSOs
- indications on the potential role of flexibility and storage as a support of T&D planning
- guidelines for NRA for the adoption of opportune regulation.

FlexPlan: partnership

Research Partners:

- RSE, Italy (Project Coordinator, WP7 and WP8 leader)
- EKC, Serbia
- KU-Leuven, Belgium (WP1 leader)
- N-SIDE, Belgium (WP3 leader)
- R&D NESTER Portugal (WP5 leader)
- SINTEF, Norway (WP6 leader)
- TECNALIA, Spain (WP2 leader)
- TU-Dortmund, Germany (WP4 leader)
- VITO, Belgium

Transmission System Operators:

- TERNA, Italy
 - Terna Rete Italia as Linked third Party
- REN, Portugal
- ELES, Slovenia

Distribution System Operators

- ENEL Global Infrastructure and Networks
 - e-distribuzione as Linked third Party

The new planning tool

- Best planning strategy with a limited number of expansion options (mixed-integer, sequential OPF)
- T&D integrated planning
- Embedded environmental analysis (air quality, carbon footprint, landscape constraints)
- Simultaneous mid- and long-term planning calculation over three grid years: 2030-2040-2050
- Yearly climate variants (variability of RES time series and load time series) taken into account in by a Monte Carlo process; the number of combinations reduced by using clustering-based scenario reduction techniques.
- Full incorporation of CBA criteria into the target function
- Probabilistic elements (instead of N-1 security criterion)
- Numerical ad hoc decomposition techniques to reduce calculation efforts

The pre-processor

- The planning tool needs to receive as an input the planning candidates for the three years (2030, 2040, 2050) and for each node.
- This input is provided by a software tool (pre-processor) that ranks for each node the suitability of different kinds of investments (new lines/cables, storage elements, flexible management of big loads
- To do so, the pre-processor exploit the information provided by Lagrangian multipliers of line transit constraints and nodal power balance of a non-expanded minimum cost OPF (they provide information on how much the target function would improve as a consequence of a unit relaxation of the constraint).

Pan-European and regional scenarios

Prepare pan-EU grid model

Regionalization of RES capacities and loads

Market Simulation for cross-border exchanges

Grid simulations for detailed Regional Cases

The main source for the scenarios considered in FlexPlan project is the Ten Year Network Development Plan (TYNDP) 2020, developed by ENTSO-E, which describes possible trends up to 2050. ENTSO-E's TYNDP describes three scenarios:

- National trends
- Distributed Energy
- Global Ambition

that added up over three grid years (2030, 2040, 2050) makes up 9 scenarios to be considered by FlexPlan. For 2050, the document "A Clean Planet for all" by the EC was also considered.

ENTSO-E's TYNDP 2018 pan-European **transmission grid model** (extra-high voltage) is also utilized as a basis for the FlexPlan simulations. For sub-transmission, public data from Open Street Map sources is used alongside with information available to the consortium partners.

Synthetic distribution networks are created in order to have a reduced scale model of the real networks. They are created on the basis of network statistics and with the help of the DiNeMo tool.

The FlexPlan web

- The official web site of the FlexPlan project is: https://flexplan-project.eu/
 All project news and other information are posted there
- Project brochure can be downloaded from: https://flexplan-project.eu/wp-content/uploads/2020/02/FlexPlan_brochure.pdf
- All project publications (deliverables, papers, important presentations) are publicly downloadable from: https://flexplan-project.eu/publications/

Thank you...

Gianluigi Migliavacca

Contact Information

Affiliation: RSE S.p.A.

Phone: +39 02 3992 5489

Email: gianluigi.migliavacca@rse-web.it

Energetico

FlexPlan

FlexPlan-Project.eu

This presentation reflects only the author's view and the Innovation and Networks Executive Agency (INEA) is not responsible for any use that may be made of the information it contains.